Детальная информация

Название: Magazine of Civil Engineering. — № 7 (107)
Организация: Санкт-Петербургский политехнический университет Петра Великого
Выходные сведения: Санкт-Петербург: СПбПУ, 2021
Коллекция: Общая коллекция
Тематика: Строительство; Сопротивление материалов; Строительная механика; Строительные материалы
УДК: 624.04(051); 69(051); 539.3/.6(051)
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Свободный доступ из сети Интернет (чтение, печать, копирование)
Ключ записи: RU\SPSTU\edoc\67964

Разрешенные действия: Прочитать Загрузить (18,9 Мб)

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
-> Интернет Все Прочитать Печать Загрузить

Оглавление

  • title107
  • index
    • E-mail: mce@spbstu.ru
    • Web: http://www.engstroy.spbstu.ru
    • Contents
  • реклама1
  • 01
    • Technogenic anhydrite binder for high-strength concrete
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
  • 02
    • Behavior of RC beams with different bond strength
      • 1. Introduction
      • 2. Method
        • 2.1. Design constants
        • 2.2. Elements
        • 2.3. Materials
        • 2.4. Models
      • 3. Results and Discussion
        • 3.1. Validation of models
        • 3.2. Effect of CFRP contact area
        • 3.3. Effect of concrete strength degradation
        • 3.4. Effect of epoxy bond strength degradation
      • 4. Conclusions
  • 03
    • Long-term strength of polyethylene pipes with increased temperature resistance without reinforcement
    • Ultra high-performance fiber reinforced concrete panel subjected to high velocity impact
      • 1. Introduction
      • 2. Materials and Methods
      • 3. Results and Discussion
      • 4. Conclusions
      • 5. Conflict of Interests
  • 04
    • Structural reliability analysis using evidence theory and fuzzy probability distributions
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusions
  • 05
    • 1. Introduction
    • 2. Methods
      • 2.1. Problem formulation for parametric optimization of steel structures
      • 2.2. An improved gradient projection method for solving the formulated parametric optimization problem
      • 2.3. A parametric optimization algorithm based on the gradient projection method
    • 3. Results and Discussion
      • 3.1. Geometry and cross-sectional optimization of a 19-bar cantilever truss
      • 3.2. Cross-sectional optimization of a 41-bar roof truss
    • 4. Conclusion
  • 06
    • Algorithm of correcting bimoments in calculations of thin-walled bar systems
      • 1. Introduction
      • 2. Methods
        • 2.1. Definition of the bimoment relationship condition
        • 2.2. Forming the finite-element model and iterative problem solution process
      • 3. Results and Discussion
      • 4. Conclusions
      • 5. Acknowledgement
  • 07
    • Arbitrary quadrangular finite element for plates with shear deformations
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussions
      • 4. Conclusion
  • 08
    • Open flow damper in effluent control system
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Oil film registration method
        • 2.2. Basic parameters of flow soothing method
        • 2.3. Flow soothing damper
      • 3. Results and Discussion
      • 4. Conclusions
      • 5. Acknowledgement
  • 09
    • Flexural properties of hogweed chips reinforced cement composites
      • 1. Introduction
      • 2. Methods
        • 2.1. Manufacture of the concrete samples
        • 2.2. Flexural testing of the concrete samples
      • 3. Results and Discussion
        • 3.1. Flexural behavior
        • 3.2. Reinforcement efficiency
        • 3.3. Statistical analysis
        • 3.4. The mechanism of interaction of the hogweed chips and concrete matrix
      • 4. Conclusions
      • 5. Acknowledgments
  • 10
    • Performance of structurally viable green concrete derived from natural Pozzolan and Nanosilica
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Materials
        • 2.2. Methods
        • 2.2.1. Mix composition and curing
        • 2.2.2. Fresh properties
        • 2.2.3. Hardened properties
      • 3. Results and Discussion
        • 3.1. Influence of nanosilica on the fresh properties of binder
        • 3.2. Influence of nanosilica on the hardened properties of binder
        • 3.3. Influence of nanosilica on the durability of concrete
      • 4. Conclusions
      • 5. Acknowledgment
  • 11
    • Properties of fine-grained concrete containing fly ash and bottom ash
      • 1. Introduction
      • 2. Materials and Measurements
        • 2.1. Materials, mixture proportion, and preparation
        • 2.2. Testing of the specimens
      • 3. Results and Discussion
        • 3.1. Workability and density of the fresh mixture
        • 3.2. Compressive strength and splitting tensile strength
        • 3.3. Chloride Penetration Resistance and water absorption
      • 4. Conclusions
  • 12
    • Long-term strength of polyethylene pipes with increased temperature resistance without reinforcement
      • 1. Introduction
      • 2. Methods
        • 2.1. Formulation of problem
        • 2.2. Analytical solution for stress tensor components
        • 2.3. Equivalent stress measures
        • 2.4. Long-term strength curves approximation
      • 3. Results and Discussion
        • 2.5. Long-term strength nomograms
      • 4. Conclusions
      • 5. Acknowledgments
  • 13
    • Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
      • 1. Introduction
      • 2. Materials and methods
        • 2.1. Materials
        • 2.2. The bacterial healing agent
        • 2.3. The protective agents
        • 2.4. Mix design, mixing, specimens, and curing
        • 2.5. Controlled cracking
        • 2.6. Methodology
        • 2.7. Test methods
      • 3. Results
        • 3.1. Consistency
        • 3.2. Tensile and compressive strength
        • 3.3. Visual inspections of the crack healing efficiency
        • 3.4. Dynamic Young's modulus recovery
      • 4. Discussion
      • 5. Conclusions
      • 6. Acknowledgement
  • 14
    • Isotropic damage model to simulate failure in reinforced concrete beam
      • 1. Introduction
      • 2. Methods
        • 2.1. Testing plan
        • 2.2. Cement, aggregates and mix design
        • 2.3. Specimens
        • 2.4. Curing
        • 2.5. Laboratory Tests
        • 2.5.1 Compressive strength
        • 2.5.2 Flexural Test
      • 3. Results and Discussion:
        • 3.1. Mechanical Behavior
        • 3.2. COMSOL Simulation Steps
        • 3.3. COMSOL Simulation of Mechanical Behavior
        • 3.3.4 COMSOL Simulation of Mechanical Damage
        • 3.3.5 Cracks Development in RC Beams
      • 4. Conclusions
  • 15
    • Improvement of mechanical characteristics of mortar by using of wollastonite
      • 1. Introduction
      • 2. Materials and methods
        • 2.1. Materials
        • 2.2. Mix design
        • 2.3. Methods
      • 3. Results and Discussion
      • 4. Conclusion
      • 5. Prospects for further development of the topic
      • 6. Acknowledgements
  • реклама2
  • оборот
  • index.pdf
    • E-mail: mce@spbstu.ru
    • Web: http://www.engstroy.spbstu.ru
    • Contents

Содержит

Статистика использования

stat Количество обращений: 235
За последние 30 дней: 22
Подробная статистика