Title: Impact of elevated temperature on the behavior of strengthened RC beams with CFRP // Magazine of Civil Engineering. – 2021. – № 6 (106). — С. 10612
Creators: Al-Rousan R.
Imprint: 2021
Collection: Общая коллекция
Subjects: Строительство; Строительная механика; reinforced concrete beams; plasticity of beams; carbon fiber; bends of building beams; thermal conductivity of building structures; железобетонные балки; усиленные железобетонные балки; пластичность балок; углепластики; изгибы строительных балок; теплопроводность строительных конструкций
UDC: 624.04
LBC: 38.112
Document type: Article, report
File type: PDF
Language: English
DOI: 10.34910/MCE.106.12
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)
Record key: 5515a1e6-5cf3-43e4-98b0-610f03e1abe0

Allowed Actions: Read Download (1.5 Mb)

Group: Anonymous

Network: Internet


Elevated temperatures (beyond 500 C) severely deteriorate concrete structures due to vapor pressure, decomposition of cement hydration products, inhomogeneous volume changes of concrete’s ingredients. Carbon fiber-reinforced polymer (CFRP) composite materials provide the most significant retrieval of the structural performance to severely heat-damaged structural concrete members. Therefore, an experimental study investigated the influence of elevated temperatures on the flexural behavior of reinforced concrete (RC) beams strengthened externally with CFRP. For this purpose, thirty-two reinforced concrete beams were cast. Twenty-four beams were externally strengthened with CFRP, and eight beams were unanchored and left as a control. The beams then were tested under four-point bending to assess their structural performance in terms of failure modes and load-displacement relations. The experimental results have clearly shown that the control beams suffered from ductile failure. The CFRP strengthened beams failed by debonding the CFRP sheets after yielding the flexural steel reinforcement. The strengthened beams showed an increase in the ultimate load-carrying capacity accompanied by an enhancement in mid-span deflection in different percentages concerning the control beam. The CFRP sheets’ ability in the bridging of the crack increased with the increase of CFRP length by providing more development length in catching the two sides of the major flexural crack. The load-deflection curve can be divided into two stages; the first portion is nearly a straight line, and the second stage with slope experienced a slight increase in the load with a large increase in deflection. The second stage formed after the yielding of steel reinforcement and formation of the main flexural crack where the applied load was carried by the CFRP sheet. Finally, the influence of the exposure temperature on the ductility, energy absorption, and ultimate load reduction percentage increases with the increase of temperature.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
-> Internet All Read Print Download

Table of Contents

  • Impact of elevated temperature on the behavior of strengthened RC beams with CFRP
    • 1. Introduction
    • 2. Methods
      • 2.1. Experimental Work
      • 2.2. Mix design
      • 2.3. Heat treatment Method
      • 2.4. Bonding of CFRP sheets to the concrete beams
      • 2.5. Testing Setup
    • 3. Results and Discussion
      • 3.1. Failure Mode
      • 3.2. CFRP strain
      • 3.3. Load-deflection behavior
      • 3.4. Ultimate load capacity and corresponding deflection
      • 3.5. Elastic stiffness
      • 3.6. Toughness
      • 3.7. Evaluation of Performance of Experimental Results
      • 3.8. Comparison of experimental results with the ACI model
    • 4. Conclusions
    • 5. Acknowledgment

Usage statistics

stat Access count: 41
Last 30 days: 0
Detailed usage statistics