Details

Title: Magazine of Civil Engineering. — № 7 (115)
Organization: Санкт-Петербургский политехнический университет Петра Великого
Imprint: Санкт-Петербург: СПбПУ, 2022
Collection: Общая коллекция
Subjects: Строительство; Сопротивление материалов; Строительная механика; Строительные материалы
UDC: 624.04(051); 69(051); 539.3/.6(051)
Document type: Other
File type: PDF
Language: English
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)
Record key: RU\SPSTU\edoc\70434

Allowed Actions: Read Download (12.6 Mb)

Group: Anonymous

Network: Internet

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
-> Internet All Read Print Download

Table of Contents

  • title115
  • index
  • 01
    • Model of pile-frozen soil interaction in a closed form
      • 1. Introduction
      • 2. Methods
        • 2.1. Static equations with respect to the pile geometry
        • 2.2. Physical equation in the form of Hooke's law for normal frost heaving stresses
        • 2.3. Thermal conductivity Equation and determining the position of the frost boundary
      • 3. Results and Discussion
      • 4. Conclusions
  • 02
    • Comparative feasibility analysis of fly ash bricks, clay bricks and fly ash incorporated clay bricks
      • 1. Introduction
      • 2. Methods
        • 2.1. Raw materials
        • 2.2. Fabrication of brick specimens
        • 2.3. Testing Methods
      • 3. Results and Discussion
        • 3.1. Characterization of Raw materials
    • 3.1.1. Sieve analysis
    • 3.1.2. Chemical analysis
    • 3.1.4. FTIR analysis of fly ash and clay
      • 3.2. Mechanical properties
    • 3.2.1. Compressive strength and water absorption
      • 3.3. Effect of various parameters on brick specimens
    • 3.3.2. Effect of firing temperature on CB strength properties
    • 3.3.3. Effect of ash content on FC strength properties
      • 3.4. Efflorescence test of FB, CB and FC
      • 3.5. Effect of firing process on colour of CB
      • 3.6. Works by other authors
      • 4. Conclusions
  • 03
    • Water treatment residue and coal fly ash geopolymers
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Materials
        • 2.2. The alkaline activity of oxides
        • 2.3. Specimen preparation
        • 2.4. Methods of analysis
      • 3. Results and Discussions
        • 3.1. FTIR analysis
        • 3.2. SEM analysis
        • 3.3. Compressive Strength
      • 4. Conclusions
  • 04
    • Contact interaction of multilayer slabs with an inhomogeneous base
      • 1. Introduction
      • 2. Methods
        • 2.1. Mathematical models of the problem
        • 2.2. Solution method
      • 3. Results and Discussion
        • 3.1. Problem
        • 3.2. Problem
        • 3.3. Substantiation of the solution method
        • 3.4. Problem
      • 4. Conclusion
  • 05
    • Resilient modulus model of asphalt mixture using steel slag
      • 1. Introduction
      • 2. Experimental Methods
        • 2.1. Materials
        • 2.2. Morphology Characteristic
        • 2.3. Asphalt Rheology
        • 2.4. Mixture Design
      • 3. Results and Discussion
        • 3.1. Asphalt Stiffness Modulus
        • 3.2. Mixture Stiffness Modulus
        • 3.3. Sensitivity of Resilient Modulus to Temperature Changes
        • 3.4. Model of Mixture Resilient Modulus
      • 4. Conclusion
  • 06
    • Stress-strain state of CFRD with a decrease in friction at the face-sidewall contact
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
      • 4. Conclusion
  • 07
    • Complex modified additive for concrete based on industrial waste
      • 1. Introduction
      • 2. Methods
      • 3. Results and Discussion
        • 3.1. The results of determining the strength of the binder
        • 3.2. The results of the determination of the setting time
        • 3.3. The results of determining the bending strength of the binder
        • 3.4. The results of determining the cube strength of concrete
        • 3.5. The results of determination of frost resistance
        • 3.6. The results of water absorption determination
        • 3.7. The evaluation of the optimal composition of the concrete mixture
      • 4. Conclusion
  • 08
    • Topology design of plane bar systems based on polygonal discretization
      • 1. Introduction
      • 2. Methods
        • 2.1. Formulation of the topology optimization problem
        • 2.2. Boundary conditions of the task
        • 2.3. Algorithm of design topology for plane bar systems
        • 2.4. Forming trusses topology
        • 2.5. FE analysis for topology design
      • 3. Results
        • 3.1. Design frame topology for the symmetrically loaded area. Example 1
        • 3.2. Design frame topology for an asymmetrically loaded area. Example 2
        • 3.3. Truss structure design. Example 3
      • 4. Discussion
      • 5. Conclusion
  • 09
    • Workability of warm mix asphalt additives and mechanical property characterization of asphalt concrete
      • 1. Introduction
      • 2. Materials and Methods
      • 3. Results and Discussion
      • 4. Conclusion
  • 10
    • High performance lightweight concretes for 3D printing
      • 1. Introduction
      • 2. Methods
        • 2.1. Used materials
        • 2.2. Preparation of concrete samples and determination of their characteristics
      • 3. Results and Discussion
      • 4. Conclusions
  • 11
    • Durable concrete in sewerage using non-grinded rice husk ash and water-permeable mould
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Materials and specifications
        • 2.2. Test methods
        • 2.2.1 Surface moisture content
      • 3. Results and Discussion
        • 3.1. Water sorptivity of concrete
        • 3.2. Porosity and pore size distribution of concrete
        • 3.3. Accelerated sulphuric acid resistance
      • 4. Conclusions
  • 12
    • Compressive strength prediction model of lightweight high-strength concrete
      • 1. Introduction
      • 2. Methods
        • 2.1. Influence factor extraction
        • 2.2. Analysis of influencing factors
        • 2.3. Establish a prediction model for the compressive strength of lightweight high-strength concrete
      • 3. Results and Discussion
        • 3.1. Model validation
        • 3.2. Comparison between prediction models
        • 3.3. Determination of the applicable conditions of the model
      • 4. Conclusions
  • 13
    • Influence of the technological foam concrete manufacturing process on its pore structure
      • 1. Introduction
      • 2. Materials and Methods
      • 3. Results and Discussion
        • 3.1. Results and discussion of determining water absorption
        • 3.2. Results of determining water absorption
        • 3.3. Results and discussions of strength determination of segmented cylindrical specimens by unconfined compression test
      • 4. Conclusions
  • 14
    • Influence of NaOH-concentration and blast-furnace-slag on the properties of geopolymer mortars
      • 1. Introduction
      • 2. Materials and Methods
        • 2.1. Material properties
        • 2.2. Experimental Methods
        • 2.3. Mixture proportion
        • 2.4. Curing specimens
      • 3. Results and Discussion
        • 3.1. Workability of alkali-activated bottom ash mortar mixtures
        • 3.2. Compressive strength of BA alkali-activated mortar samples
      • 4. Conclusions
  • title_оборот_сжатый

Contains

Usage statistics

stat Access count: 149
Last 30 days: 16
Detailed usage statistics