Детальная информация

Название Materials Physics and Mechanics. – 2022.
Организация Санкт-Петербургский политехнический университет Петра Великого ; Институт проблем машиноведения РАН
Выходные сведения Санкт-Петербург, 2022
Коллекция Общая коллекция
Тип документа Другой
Тип файла PDF
Язык Русский
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Дополнительно Новинка
Ключ записи RU\SPSTU\edoc\76105
Дата создания записи 28.05.2025

Разрешенные действия

Прочитать Загрузить (13,8 Мб)

Группа Анонимные пользователи
Сеть Интернет
Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все
  • preface.pdf
    • PREFACE
  • 2 A.V.Ivashkevich, E.M. Ovsiyuk, V.V. Kisel, V.M. Red'kov.pdf
    • 1. Introduction
    • 2. Matrix complex form of Maxwell theory in a vacuum
    • 3. Modified Lorentz symmetry
    • 4. On Minkowski electrodynamics in moving bodies
    • 5. Minkowski relations in the complex 3-vector form
    • 6. Symmetry properties of the matrix equation in media
    • 7. Dirac matrices and electromagnetic field
    • 26. Van der Waerden B. Spinoranalyse. Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse. 1929: 100–109 .
    • 27. Juvet G. Opérateurs de Dirac et Équations de Maxwell. Commentarii Mathematici Helvetici. 1930;2: 225-235.
    • 37. de Broglie L. L’équation d’Ondes du Photon. Compt. Rend. Acad. Sci. Paris. 1934. 199. 445–448.
      • 46. Kemmer N. The algebra of meson matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 1943;39: 189-196.
    • 54. Schrödinger E. Maxwell’s and Dirac’s equations in expanding universe. Proceedings of the Royal Irish Academy. A. 1940;46: 25-47.
      • 99. Frankel T. Maxwell’s equations. The American Mathematical Monthly. 1974;81: 343-349.
  • 9 N.A. Voronova, A.A. Kupchishin, A.I. Kupchishin, T.A. Shmygaleva.pdf
    • Modeling of PKA energy spectra and the concentration of vacancy clusters in materials irradiated with light ions
    • N.A. Voronova1, A.A. Kupchishin1, A.I. Kupchishin1,2(, T.A. Shmygaleva2
  • A.A. Zisman, N.Yu. Ermakova_unproofed.pdf
    • 3. Humphreys FJ, Bate PS. The microstructures of polycrystalline Al–0.1Mg after hot plane strain compression. Acta Materialia. 2007;55(16): 5630-5645.
    • 4. Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Materials Science and Engineering: A. 1993;168(2): 141-148.
    • 5. Chen SF, Li DY, Zhang SH, Han HN, Lee HW, Lee MG. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. International Journal of Plasticity. 2020;131: 102710.
    • 6. Taylor GI. Plastic strains in metals. Journal of the Institute of Metals. 1938;62: 307-324.
    • 7. Seefeldt M, Van Houtte P. Grain subdivision and local texture evolution studied by means of a coupled substructure-texture evolution model. Materials Science Forum. 2002;408-412: 433-438.
    • 8. Rey C, Mussot P, Vroux AM, Zaoui A. Effects of interfaces on the plastic behavior of metallic aggregates. Journal de Physique Colloques. 1985;46(C4): 645-650.
    • 9. Berveiller M, Bouaquine H, Fakri N, Lipinski P. Texture transition, micro shear bands and heterogeneous plastic strain in FCC and BCC metals. Textures and Microstructures. 1988;8-9: 351-379.
    • 10. Ananthan VS, Leffers T, Hansen N. Characteristics of second generation microbands in cold-rolled copper. Scripta Metallurgica et Materialia. 1991;25: 137-142.
    • 11. Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D. On the influence of the grain boundary misorientation on the plastic deformation of aluminium bicrystals. Acta Materialia. 2003;51: 4719-4735.
    • 12. Wert JA, Liu Q, Hansen N. Dislocation boundary formation in a cold rolled cube-oriented Al single crystal. Acta Materialia.1997;45(6): 2565-2576.
    • 15. Ball J, James R. Fine phase mixtures as minimizer of energy. Archive for Rational Mechanics and Analysis. 1987;100: 13-52.
    • 16. Zisman A. Predictive micromechanical model for plastic accommodation and crystallography of martensite embryo. International Journal of Engineering Science. 2020;150: 103245.
    • 28. Bullough R, Bilby BA. Continuous distribution of dislocations: Surface dislocations and crystallography of martensitic transformation. Proceedings of the Royal Society of London. 1956;B69: 1276-1286.
    • 29. Kocks UF, Chandra H. Slip geometry in partially constrained deformation. Acta Metallurgica. 1982;30: 695-709.
    • 30. Van Houtte P, Delannay L, Samaidar I. Quantitative prediction of cold rolling textures in low carbon steels by means of the LAMEL model. Textures and Microstructures, 1999;31: 109-149.
    • 31. Van Houtte P, Li S, Seefeldt M, Delannay L, Samaidar I. Deformation texture prediction: From the Taylor model to the advanced Lamel model. International Journal of Plasticity. 2005;21: 589-624.
    • 32. Raabe D. Simulation of rolling textures of bcc metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes. Materials Science and Engineering: A. 1995;197: 31-37.
    • 33. Evers LP, Parks DM, Brekelmans WAM, Geers MGD. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids. 2002;50: 2403-2424.
    • 34. Budiansky B, Wu TT. Theoretical prediction of plastic strains of polycrystals. In: Rosenberg RM (ed.) Proceedings of the 4th U.S. National Congress on Applied Mechanics. New York: ASME; 1962; pp. 1175-1185.
    • 35. Clausen B, Leffers T, Lorentzen L, Pedersen OB, Van Houtte P. The resolved shear stress on the non-active slip systems in Taylor/Bishop-Hill models for FCC polycrystals. Scripta Materialia. 2000;42: 91-96.
    • 36. Zisman A. Model for partitioning slip patterns at triple junctions of grains. International Journal of Engineering Science. 2017;116: 155-164.
  • MPM_2022_instructions.pdf
    • Submission of papers:
  • 9 N.A. Voronova, A.A. Kupchishin, A.I. Kupchishin, T.A. Shmygaleva.pdf
    • Modeling of PKA energy spectra and the concentration of vacancy clusters in materials irradiated with light ions
    • N.A. Voronova1, A.A. Kupchishin1, A.I. Kupchishin1,2(, T.A. Shmygaleva2
  • 12 A.A. Zisman N.Yu. Ermakova.pdf
    • 3. Humphreys FJ, Bate PS. The microstructures of polycrystalline Al–0.1Mg after hot plane strain compression. Acta Materialia. 2007;55(16): 5630-5645.
    • 4. Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Materials Science and Engineering: A. 1993;168(2): 141-148.
    • 5. Chen SF, Li DY, Zhang SH, Han HN, Lee HW, Lee MG. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. International Journal of Plasticity. 2020;131: 102710.
    • 6. Taylor GI. Plastic strains in metals. Journal of the Institute of Metals. 1938;62: 307-324.
    • 7. Seefeldt M, Van Houtte P. Grain subdivision and local texture evolution studied by means of a coupled substructure-texture evolution model. Materials Science Forum. 2002;408-412: 433-438.
    • 8. Rey C, Mussot P, Vroux AM, Zaoui A. Effects of interfaces on the plastic behavior of metallic aggregates. Journal de Physique Colloques. 1985;46(C4): 645-650.
    • 9. Berveiller M, Bouaquine H, Fakri N, Lipinski P. Texture transition, micro shear bands and heterogeneous plastic strain in FCC and BCC metals. Textures and Microstructures. 1988;8-9: 351-379.
    • 10. Ananthan VS, Leffers T, Hansen N. Characteristics of second generation microbands in cold-rolled copper. Scripta Metallurgica et Materialia. 1991;25: 137-142.
    • 11. Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D. On the influence of the grain boundary misorientation on the plastic deformation of aluminium bicrystals. Acta Materialia. 2003;51: 4719-4735.
    • 12. Wert JA, Liu Q, Hansen N. Dislocation boundary formation in a cold rolled cube-oriented Al single crystal. Acta Materialia.1997;45(6): 2565-2576.
    • 15. Ball J, James R. Fine phase mixtures as minimizer of energy. Archive for Rational Mechanics and Analysis. 1987;100: 13-52.
    • 16. Zisman A. Predictive micromechanical model for plastic accommodation and crystallography of martensite embryo. International Journal of Engineering Science. 2020;150: 103245.
    • 28. Bullough R, Bilby BA. Continuous distribution of dislocations: Surface dislocations and crystallography of martensitic transformation. Proceedings of the Royal Society of London. 1956;B69: 1276-1286.
    • 29. Kocks UF, Chandra H. Slip geometry in partially constrained deformation. Acta Metallurgica. 1982;30: 695-709.
    • 30. Van Houtte P, Delannay L, Samaidar I. Quantitative prediction of cold rolling textures in low carbon steels by means of the LAMEL model. Textures and Microstructures, 1999;31: 109-149.
    • 31. Van Houtte P, Li S, Seefeldt M, Delannay L, Samaidar I. Deformation texture prediction: From the Taylor model to the advanced Lamel model. International Journal of Plasticity. 2005;21: 589-624.
    • 32. Raabe D. Simulation of rolling textures of bcc metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes. Materials Science and Engineering: A. 1995;197: 31-37.
    • 33. Evers LP, Parks DM, Brekelmans WAM, Geers MGD. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids. 2002;50: 2403-2424.
    • 34. Budiansky B, Wu TT. Theoretical prediction of plastic strains of polycrystals. In: Rosenberg RM. (ed.) Proceedings of the 4th U.S. National Congress on Applied Mechanics. New York: ASME; 1962. p.1175-1185.
    • 35. Clausen B, Leffers T, Lorentzen L, Pedersen OB, Van Houtte P. The resolved shear stress on the non-active slip systems in Taylor/Bishop-Hill models for FCC polycrystals. Scripta Materialia. 2000;42: 91-96.
    • 36. Zisman A. Model for partitioning slip patterns at triple junctions of grains. International Journal of Engineering Science. 2017;116: 155-164.

Количество обращений: 197 
За последние 30 дней: 151

Подробная статистика