Details

Title Materials Physics and Mechanics. – 2022.
Organization Санкт-Петербургский политехнический университет Петра Великого ; Институт проблем машиноведения РАН
Imprint Санкт-Петербург, 2022
Collection Общая коллекция
Document type Other
File type PDF
Language Russian
Rights Свободный доступ из сети Интернет (чтение, печать, копирование)
Additionally New arrival
Record key RU\SPSTU\edoc\76105
Record create date 5/28/2025

Allowed Actions

Read Download (13.8 Mb)

Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet All
  • preface.pdf
    • PREFACE
  • 2 A.V.Ivashkevich, E.M. Ovsiyuk, V.V. Kisel, V.M. Red'kov.pdf
    • 1. Introduction
    • 2. Matrix complex form of Maxwell theory in a vacuum
    • 3. Modified Lorentz symmetry
    • 4. On Minkowski electrodynamics in moving bodies
    • 5. Minkowski relations in the complex 3-vector form
    • 6. Symmetry properties of the matrix equation in media
    • 7. Dirac matrices and electromagnetic field
    • 26. Van der Waerden B. Spinoranalyse. Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse. 1929: 100–109 .
    • 27. Juvet G. Opérateurs de Dirac et Équations de Maxwell. Commentarii Mathematici Helvetici. 1930;2: 225-235.
    • 37. de Broglie L. L’équation d’Ondes du Photon. Compt. Rend. Acad. Sci. Paris. 1934. 199. 445–448.
      • 46. Kemmer N. The algebra of meson matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 1943;39: 189-196.
    • 54. Schrödinger E. Maxwell’s and Dirac’s equations in expanding universe. Proceedings of the Royal Irish Academy. A. 1940;46: 25-47.
      • 99. Frankel T. Maxwell’s equations. The American Mathematical Monthly. 1974;81: 343-349.
  • 9 N.A. Voronova, A.A. Kupchishin, A.I. Kupchishin, T.A. Shmygaleva.pdf
    • Modeling of PKA energy spectra and the concentration of vacancy clusters in materials irradiated with light ions
    • N.A. Voronova1, A.A. Kupchishin1, A.I. Kupchishin1,2(, T.A. Shmygaleva2
  • A.A. Zisman, N.Yu. Ermakova_unproofed.pdf
    • 3. Humphreys FJ, Bate PS. The microstructures of polycrystalline Al–0.1Mg after hot plane strain compression. Acta Materialia. 2007;55(16): 5630-5645.
    • 4. Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Materials Science and Engineering: A. 1993;168(2): 141-148.
    • 5. Chen SF, Li DY, Zhang SH, Han HN, Lee HW, Lee MG. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. International Journal of Plasticity. 2020;131: 102710.
    • 6. Taylor GI. Plastic strains in metals. Journal of the Institute of Metals. 1938;62: 307-324.
    • 7. Seefeldt M, Van Houtte P. Grain subdivision and local texture evolution studied by means of a coupled substructure-texture evolution model. Materials Science Forum. 2002;408-412: 433-438.
    • 8. Rey C, Mussot P, Vroux AM, Zaoui A. Effects of interfaces on the plastic behavior of metallic aggregates. Journal de Physique Colloques. 1985;46(C4): 645-650.
    • 9. Berveiller M, Bouaquine H, Fakri N, Lipinski P. Texture transition, micro shear bands and heterogeneous plastic strain in FCC and BCC metals. Textures and Microstructures. 1988;8-9: 351-379.
    • 10. Ananthan VS, Leffers T, Hansen N. Characteristics of second generation microbands in cold-rolled copper. Scripta Metallurgica et Materialia. 1991;25: 137-142.
    • 11. Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D. On the influence of the grain boundary misorientation on the plastic deformation of aluminium bicrystals. Acta Materialia. 2003;51: 4719-4735.
    • 12. Wert JA, Liu Q, Hansen N. Dislocation boundary formation in a cold rolled cube-oriented Al single crystal. Acta Materialia.1997;45(6): 2565-2576.
    • 15. Ball J, James R. Fine phase mixtures as minimizer of energy. Archive for Rational Mechanics and Analysis. 1987;100: 13-52.
    • 16. Zisman A. Predictive micromechanical model for plastic accommodation and crystallography of martensite embryo. International Journal of Engineering Science. 2020;150: 103245.
    • 28. Bullough R, Bilby BA. Continuous distribution of dislocations: Surface dislocations and crystallography of martensitic transformation. Proceedings of the Royal Society of London. 1956;B69: 1276-1286.
    • 29. Kocks UF, Chandra H. Slip geometry in partially constrained deformation. Acta Metallurgica. 1982;30: 695-709.
    • 30. Van Houtte P, Delannay L, Samaidar I. Quantitative prediction of cold rolling textures in low carbon steels by means of the LAMEL model. Textures and Microstructures, 1999;31: 109-149.
    • 31. Van Houtte P, Li S, Seefeldt M, Delannay L, Samaidar I. Deformation texture prediction: From the Taylor model to the advanced Lamel model. International Journal of Plasticity. 2005;21: 589-624.
    • 32. Raabe D. Simulation of rolling textures of bcc metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes. Materials Science and Engineering: A. 1995;197: 31-37.
    • 33. Evers LP, Parks DM, Brekelmans WAM, Geers MGD. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids. 2002;50: 2403-2424.
    • 34. Budiansky B, Wu TT. Theoretical prediction of plastic strains of polycrystals. In: Rosenberg RM (ed.) Proceedings of the 4th U.S. National Congress on Applied Mechanics. New York: ASME; 1962; pp. 1175-1185.
    • 35. Clausen B, Leffers T, Lorentzen L, Pedersen OB, Van Houtte P. The resolved shear stress on the non-active slip systems in Taylor/Bishop-Hill models for FCC polycrystals. Scripta Materialia. 2000;42: 91-96.
    • 36. Zisman A. Model for partitioning slip patterns at triple junctions of grains. International Journal of Engineering Science. 2017;116: 155-164.
  • MPM_2022_instructions.pdf
    • Submission of papers:
  • 9 N.A. Voronova, A.A. Kupchishin, A.I. Kupchishin, T.A. Shmygaleva.pdf
    • Modeling of PKA energy spectra and the concentration of vacancy clusters in materials irradiated with light ions
    • N.A. Voronova1, A.A. Kupchishin1, A.I. Kupchishin1,2(, T.A. Shmygaleva2
  • 12 A.A. Zisman N.Yu. Ermakova.pdf
    • 3. Humphreys FJ, Bate PS. The microstructures of polycrystalline Al–0.1Mg after hot plane strain compression. Acta Materialia. 2007;55(16): 5630-5645.
    • 4. Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Materials Science and Engineering: A. 1993;168(2): 141-148.
    • 5. Chen SF, Li DY, Zhang SH, Han HN, Lee HW, Lee MG. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. International Journal of Plasticity. 2020;131: 102710.
    • 6. Taylor GI. Plastic strains in metals. Journal of the Institute of Metals. 1938;62: 307-324.
    • 7. Seefeldt M, Van Houtte P. Grain subdivision and local texture evolution studied by means of a coupled substructure-texture evolution model. Materials Science Forum. 2002;408-412: 433-438.
    • 8. Rey C, Mussot P, Vroux AM, Zaoui A. Effects of interfaces on the plastic behavior of metallic aggregates. Journal de Physique Colloques. 1985;46(C4): 645-650.
    • 9. Berveiller M, Bouaquine H, Fakri N, Lipinski P. Texture transition, micro shear bands and heterogeneous plastic strain in FCC and BCC metals. Textures and Microstructures. 1988;8-9: 351-379.
    • 10. Ananthan VS, Leffers T, Hansen N. Characteristics of second generation microbands in cold-rolled copper. Scripta Metallurgica et Materialia. 1991;25: 137-142.
    • 11. Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D. On the influence of the grain boundary misorientation on the plastic deformation of aluminium bicrystals. Acta Materialia. 2003;51: 4719-4735.
    • 12. Wert JA, Liu Q, Hansen N. Dislocation boundary formation in a cold rolled cube-oriented Al single crystal. Acta Materialia.1997;45(6): 2565-2576.
    • 15. Ball J, James R. Fine phase mixtures as minimizer of energy. Archive for Rational Mechanics and Analysis. 1987;100: 13-52.
    • 16. Zisman A. Predictive micromechanical model for plastic accommodation and crystallography of martensite embryo. International Journal of Engineering Science. 2020;150: 103245.
    • 28. Bullough R, Bilby BA. Continuous distribution of dislocations: Surface dislocations and crystallography of martensitic transformation. Proceedings of the Royal Society of London. 1956;B69: 1276-1286.
    • 29. Kocks UF, Chandra H. Slip geometry in partially constrained deformation. Acta Metallurgica. 1982;30: 695-709.
    • 30. Van Houtte P, Delannay L, Samaidar I. Quantitative prediction of cold rolling textures in low carbon steels by means of the LAMEL model. Textures and Microstructures, 1999;31: 109-149.
    • 31. Van Houtte P, Li S, Seefeldt M, Delannay L, Samaidar I. Deformation texture prediction: From the Taylor model to the advanced Lamel model. International Journal of Plasticity. 2005;21: 589-624.
    • 32. Raabe D. Simulation of rolling textures of bcc metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes. Materials Science and Engineering: A. 1995;197: 31-37.
    • 33. Evers LP, Parks DM, Brekelmans WAM, Geers MGD. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids. 2002;50: 2403-2424.
    • 34. Budiansky B, Wu TT. Theoretical prediction of plastic strains of polycrystals. In: Rosenberg RM. (ed.) Proceedings of the 4th U.S. National Congress on Applied Mechanics. New York: ASME; 1962. p.1175-1185.
    • 35. Clausen B, Leffers T, Lorentzen L, Pedersen OB, Van Houtte P. The resolved shear stress on the non-active slip systems in Taylor/Bishop-Hill models for FCC polycrystals. Scripta Materialia. 2000;42: 91-96.
    • 36. Zisman A. Model for partitioning slip patterns at triple junctions of grains. International Journal of Engineering Science. 2017;116: 155-164.

Access count: 197 
Last 30 days: 151

Detailed usage statistics