Details

Title Analysis of rheological model parameters for various foamed vibration-damping materials // Magazine of Civil Engineering. – 2025. – Т. 18, № 2. — С. 13403
Creators Shitikova M. V. ; Smirnov V. A.
Imprint 2025
Collection Общая коллекция
Subjects Строительство ; Строительные материалы и изделия ; Физика ; Теория звука ; vibration damping materials ; foamed vibration damping materials ; rheological models ; resonance tests ; polyurethane foam ; damping properties ; вибродемпфирующие материалы ; вспененные вибродемпфирующие материалы ; реологические модели ; резонансные испытания ; пенополиуретан ; демпфирующие свойства
UDC 691 ; 534.1
LBC 38.3 ; 22.33
Document type Article, report
Language English
DOI 10.34910/MCE.134.3
Rights Свободный доступ из сети Интернет (чтение, печать, копирование)
Additionally New arrival
Record key RU\SPSTU\edoc\78141
Record create date 1/27/2026

Allowed Actions

Read Download (1.3 Mb)

Group Anonymous
Network Internet

The study presents an experimental and analytical investigation of foamed polyurethane viscoelastic materials with varying density and pore structures, focusing on their dynamic mechanical behavior relevant for vibration damping applications. Samples with distinct pore configurations (open, closed, and combined) and varying densities (165-380 kg/m{3}) were subjected to resonance-based dynamic tests under static loads of 2, 5, and 10 kPa. The dynamic modulus of elasticity and damping characteristics, including loss factor, fractional damping parameters, and relaxation times, were determined. Results indicated that damping properties are strongly influenced by material density and internal pore structure, with closed-pore materials exhibiting lower damping capacities compared to materials with open or combined pores. A Fractional Standard Linear Solid (FSLS) model was effectively utilized to characterize the observed nonlinear viscoelastic behaviors, successfully correlating experimental data through parameter identification methods. The findings confirm that increased density generally enhances the dynamic modulus while reducing damping capacity, whereas pore structure significantly affects the material's dynamic response. These insights validate fractional derivative models as efficient predictive tools, facilitating the optimized design of viscoelastic isolation systems for engineering structures.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet All
  • Analysis of rheological model parameters for various foamed vibration-damping materials
    • 1. Introduction
    • 2. Method
      • 2.1. Materials with Different Stiffness
      • 2.2. Materials with Different Damping
      • 2.3. Experimental Method
      • 2.4. Rheological Material Models
    • 3. Results and Discussion
    • 4. Conclusion

Access count: 27 
Last 30 days: 27

Detailed usage statistics