Детальная информация

Название Теория вероятностей: учебное пособие
Авторы Фирсов Андрей Николаевич
Организация Санкт-Петербургский государственный политехнический университет
Выходные сведения Санкт-Петербург: Изд-во Политехн. ун-та, 2014
Электронная публикация Санкт-Петербург, 2018
Коллекция Учебная и учебно-методическая литература ; Общая коллекция
Тематика Вероятностей теория
УДК 519.21(075.8)
Тип документа Учебник
Тип файла PDF
Язык Русский
DOI 10.18720/SPBPU/2/s18-249
Права доступа Свободный доступ из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\55925
Дата создания записи 08.11.2018

Разрешенные действия

Прочитать Загрузить (1,1 Мб)

Группа Анонимные пользователи
Сеть Интернет

Пособие написано на основе курса лекций по теории вероятностей, читаемого автором студентам третьего курса С.-Петербургского государственного политехнического университета, обучающимся по направлениям подготовки бакалавров «Системный анализ и управление» и «Информационные системы и технологии». Данное пособие охватывает первую часть курса, а именно основные классические разделы дискретной теории вероятностей. Большое внимание уделяется логическим основам теории и характерным особенностям практического применения вероятностных методов. В книге достаточно много подробно разобранных примеров, иллюстрирующих основные понятия и методы теории вероятностей. Основной материал книги не предполагает знакомство читателя с полным вузовским курсом высшей математики, однако ориентируется на читателя, обладающего определенной математической культурой. Бόльшая часть пособия будет полезна студентам вузов с сокращенной программой по высшей математике, а также лицам, желающим познакомиться с основными идеями и методами теории вероятностей самостоятельно.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Все
  • ПРЕДИСЛОВИЕ
  • ВВЕДЕНИЕ
  • § 1. СЛУЧАЙНЫЕ СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ
    • 1.1. Понятие случайного события
    • 1.2. Вероятность случайного события
    • 1.3. Алгебра событий
    • 1.4. Основные свойства вероятности
    • 1.5. Классическая модель вероятности
  • § 2. УСЛОВНАЯ ВЕРОЯТНОСТЬ. НЕЗАВИСИМОСТЬ. ФОРМУЛА БАЙЕСА
    • 2.1. Условная вероятность
    • 2.2. Независимые события
    • 2.3. Формула полной вероятности
    • 2.4. Формула Байеса
  • § 3. ОБОБЩЕНИЕ: ДИСКРЕТНАЯ МОДЕЛЬ ВЕРОЯТНОСТИ
    • 3.2. Дискретное вероятностное пространство
  • § 4. НЕКОТОРЫЕ ДОПОЛНЕНИЯ И ПРИМЕРЫ
    • 4.1. Обобщенная теорема умножения
    • 4.2. Примеры
  • § 5. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ
    • 5.1. Основные определения
    • 5.2. Основное правило комбинаторики
    • 5.3. Размещения, перестановки, сочетания
    • 5.4. Примеры
  • §6. ИСПЫТАНИЯ БЕРНУЛЛИ. ФОРМУЛА ПУАССОНА
    • 6.1. Схема независимых испытаний Бернулли
    • 6.2. Обобщенная схема Бернулли
    • 6.3. Некоторые следствия
    • 6.4. Формула Пуассона
  • § 6д. Приложения
    • 6д.1. Доказательство теоремы Пуассона
    • 6д.2. Теорема Муавра–Лапласа и ее приложения
    • 6д.3. Последовательности зависимых испытаний. Цепи Маркова
  • § 7. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
    • 7.1. Основные понятия и определения
    • 7.3. Дисперсия
    • 7.4. Независимые случайные величины

Количество обращений: 2930 
За последние 30 дней: 71

Подробная статистика