Details

Title: Исследование концепции transfer learning в моделях классификации объектов на изображениях на основе сверточных нейронных сетей для использования в мобильных приложениях: магистерская диссертация: 02.04.03
Creators: Погодин Никита Михайлович
Scientific adviser: Белых Игорь Николаевич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2017
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Нейронные сети; Распознавание образов; Изображения
UDC: 004.93.032.26(043.3)
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Level of education: Master
Speciality code (FGOS): 02.04.03
Speciality group (FGOS): 020000 - Компьютерные и информационные науки
DOI: 10.18720/SPBPU/2/v17-1907
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key: RU\SPSTU\edoc\39545

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Тема магистерской диссертации относится к задачам машинного обучения в области распознавания объектов на изображениях. В рамках работы было проведено исследование проблем обучения и использования моделей на основе сверточных нейронных сетей для распознавания объектов на изображениях для мобильных приложений. Предложено решение обнаруженных проблем в виде применения концепции transfer learning и автоматизации поиска обучающей выборки. Проведено тестирование вышеуказанного подхода, показавшее его успешность для решения поставленных задач. На основании полученных результатов реализовано веб-приложение для обучения моделей сверточных нейронных сетей. Реализовано мобильное приложение для распознавания объектов с камеры в реальном времени с возможностью использования моделей, обученных веб-приложением.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
External organizations N2 All Read
External organizations N1 All
Internet Authorized users SPbPU Read Print Download
Internet Authorized users (not from SPbPU, N2) Read
Internet Authorized users (not from SPbPU, N1)
-> Internet Anonymous

Table of Contents

  • Санкт-Петербург
  • РЕФЕРАТ
  • ОПРЕДЕЛЕНИЯ
  • ВВЕДЕНИЕ
  • 1 Обзор предметной области
    • 1.1 Подходы к распознаванию объекта
    • 1.2 Сверточные нейронные сети
    • 1.3 Проблемы при обучении сверточных нейронных сетей и подходы к решению
    • 1.4 Существующие программные решения
    • 1.5 Постановка задачи
  • 2 Теоретическая часть
    • 2.1 Задача распознавания объектов на изображении
    • 2.2 Структура модели сверточной сети Inception v3
    • 2.3 Transfer learning
    • 2.4 Применение transfer learning в обучении сверточных нейронных сетей
    • 2.5 Выборка изображений ImageNet
    • 2.6 Автоматизация получения обучающей выборки
    • 2.7 Результаты тестирования
    • 3 Программная реализация
    • 3.1 Требования к серверному приложению
    • 3.2 Фреймворк для машинного обучения Tensorflow
    • 3.3 Реализация серверного приложения
    • 3.4 Демонстрация работы серверного приложения
    • 3.5 Требования к мобильному приложению
    • 3.6 Пример работы мобильного приложения
    • 3.7 Результаты тестирования моделей в мобильном приложении
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  • ПРИЛОЖЕНИЕ 1
  • ПРИЛОЖЕНИЕ 2

Usage statistics

stat Access count: 1723
Last 30 days: 0
Detailed usage statistics