Details

Title Алгоритм семантического анализа предложений на естественном языке с использованием формального представления AMR и методов машинного обучения: магистерская диссертация: 09.04.01
Creators Лукашина Нина Борисовна
Scientific adviser Дробинцев Павел Дмитриевич
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2017
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Алгоритмы ; естественный язык ; семантический анализ ; машинное обучение
UDC 004.421:004.4'414(043.3)
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.01
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/2/v17-2110
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key RU\SPSTU\edoc\39617
Record create date 7/11/2017

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Данная диссертация посвящена проверке применимости метода машинного обучения с подкреплением в задаче построения семантического представления в формализме AMR для предложений на естественном языке. Развитие алгоритмов обработки естественного языка необходимо для создания и использования баз знаний, без которых невозможна эффективная работы с большими объемами накопленной информации на естественном языке. Семантический анализ - важнейший этап обработки естественного языка, заключающийся в построении формальной модели семантики предложения. В данной диссертации предложен новый подход к решению задачи семантического анализа, основанный на использовании метода машинного обучения с подкреплением SARSA. Метод может быть использован для адаптации работы семантического анализатора в новой предметной области. В работе представлена реализация разработанного алгоритма и даны рекомендации по возможному улучшению предложенного подхода.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 599 
Last 30 days: 0

Detailed usage statistics