Details

Title: Интеллектуальная система распознавания аномальных учетных записей пользователей соцсети «ВКонтакте» на основе моделей машинного обучения: магистерская диссертация: 09.04.04
Creators: Усманов Максим Далерович
Scientific adviser: Дробинцев Павел Дмитриевич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2017
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Интернет; Вычислительные сети; машинное обучение; социальные сети; микросервисы; интеллектуальные системы; веб-приложения
UDC: 004.738.5(043.3)
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 09.04.04
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
DOI: 10.18720/SPBPU/2/v17-2128
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

В данной работе исследуются подходы распознавания аномальных пользователей социальных сетей. Целью работы является разработка обучаемой интеллектуальной системы на языке Java, использующей алгоритмы машинного обучения для автоматического определения аномальных пользователей соцсети «ВКонтакте» на основе общедоступных сведений о проверяемом пользователе. Система обучается заранее «учителем» с помощью обучающей выборки. При построении обучающей выборки высчитываются атрибуты только на основании данных, зависящих от социальной активности исследуемого профиля: отношение к общему числу друзей таких показателей, как «подписчики», количество удаленных профилей среди друзей, среднее количество отметок «мне нравится» и др. Некоторые атрибуты высчитываются на основе анализа семантической сети связей между друзьями и друзьями друзей исследуемого пользователя. К обучающей выборке применяются наивный байесовский классификатор, решающее дерево, метод опорных векторов, которые реализованы в open source библиотеке Weka, и вызываются через Java API. Научная новизна работы заключается в предложенном подходе формирования описанных атрибутов. Решение превосходит по эффективности все автоматизируемые решения, использующие общедоступные данные.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Usage statistics

stat Access count: 404
Last 30 days: 0
Detailed usage statistics