Details

Title Интеллектуальная система распознавания аномальных учетных записей пользователей соцсети «ВКонтакте» на основе моделей машинного обучения: магистерская диссертация: 09.04.04
Creators Усманов Максим Далерович
Scientific adviser Дробинцев Павел Дмитриевич
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2017
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Интернет ; Вычислительные сети ; машинное обучение ; социальные сети ; микросервисы ; интеллектуальные системы ; веб-приложения
UDC 004.738.5(043.3)
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.04
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/2/v17-2128
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key RU\SPSTU\edoc\39660
Record create date 7/13/2017

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

В данной работе исследуются подходы распознавания аномальных пользователей социальных сетей. Целью работы является разработка обучаемой интеллектуальной системы на языке Java, использующей алгоритмы машинного обучения для автоматического определения аномальных пользователей соцсети «ВКонтакте» на основе общедоступных сведений о проверяемом пользователе. Система обучается заранее «учителем» с помощью обучающей выборки. При построении обучающей выборки высчитываются атрибуты только на основании данных, зависящих от социальной активности исследуемого профиля: отношение к общему числу друзей таких показателей, как «подписчики», количество удаленных профилей среди друзей, среднее количество отметок «мне нравится» и др. Некоторые атрибуты высчитываются на основе анализа семантической сети связей между друзьями и друзьями друзей исследуемого пользователя. К обучающей выборке применяются наивный байесовский классификатор, решающее дерево, метод опорных векторов, которые реализованы в open source библиотеке Weka, и вызываются через Java API. Научная новизна работы заключается в предложенном подходе формирования описанных атрибутов. Решение превосходит по эффективности все автоматизируемые решения, использующие общедоступные данные.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 416 
Last 30 days: 0

Detailed usage statistics