Details

Title Neural network with deep symbolic reinforcement learning: магистерская диссертация: 09.04.01
Creators Ресенде Рикетти Дитра Аймори
Scientific adviser Шкодырев Вячеслав Петрович
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2017
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Нейронные сети ; Искусственный интеллект ; Алгоритмы ; самообучение
UDC 004.032.26:004.421(043.3) ; 004.85(043.3)
Document type Master graduation qualification work
File type PDF
Language English
Level of education Master
Speciality code (FGOS) 09.04.01
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/2/v17-2595
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key RU\SPSTU\edoc\44322
Record create date 10/11/2017

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

This project investigates the advantages and disadvantages of two Reinforcement Learning algorithms, Deep Q-Network and Deep Symbolic Reinforcement Learning. The focus is to demonstrate clearly what and how these techniques are really learning in simple toy game examples. Moreover, it identifies what are the gains that the symbolic approach brings to problems in the reinforcement learning framework. For this, it was implemented in Python a simplified version of these algorithms maintaining their main learning capabilities. With the developed software, their performances are contrasted in some proposed problems, where their ability to generalize and learning speed are evaluated. Finally, it is concluded that the Deep Symbolic approach has more advantages than disadvantages compared to the state of the art, Deep Q-Network.

Этот проект исследует преимущества и недостатки двух алгоритмов обучения с подкреплением, Q-сети с самообучением и символическое самообучение с подкреплением. Акцент делается, чтобы наглядно продемонстрировать, чем и как эти методы действительно обучения как пример простой игры. Кроме того, он определяет, каковы успехи, что символический подход приводит к проблемам в укреплении базового обучения. Для этого был реализован в Python упрощённый вариант этих алгоритмов сохранения их основной функции обучения. С помощью разработанного программного обеспечения, их представления противопоставлены в некоторых предлагаемых проблемах, где оцениваются их способности к обобщению и скорость обучения. Наконец, сделан вывод, что символический подход к самообучению имеет больше преимуществ, чем недостатков по сравнению с современными, самообучающимися Q-сетями.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 87 
Last 30 days: 0

Detailed usage statistics