Детальная информация

Название: Решение задач механики сплошной среды для слоистых структур: магистерская диссертация: 01.04.03
Авторы: Марков Николай Сергеевич
Научный руководитель: Линьков А. М.
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Выходные сведения: Санкт-Петербург, 2017
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: метод граничных элементов; гиперсингулярные ядра; логарифмическая особенность; дискретное преобразование
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 01.04.03
Группа специальностей ФГОС: 010000 - Математика и механика
DOI: 10.18720/SPBPU/2/v17-6876
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Наиболее оптимальным методом решения линейных задач для слоистых структур с неоднородностями является метод граничных элементов, включающий в себя нахождение функции Грина для слоистой структуры без неоднородностей. Такой подход позволяет свести решение исходной задачи к решению интегральных уравнений с сингулярными и гиперсингулярными ядрами, заданных только на границах неоднородностей. В результате, порядок конечной алгебраической системы равен суммарному числу узлов на границах неоднородностей. Цель данной работы состоит в эффективной численной реализации алгоритма решения задач для слоистых структур с неоднородностями, и исследовании его ключевых особенностей. Основные результаты работы можно сформулировать следующим образом. Разработан максимально эффективный алгоритм решения задач для слоистых структур. Эффективность алгоритма достигается применением метода прогонки и быстрого преобразования Фурье. Для плоских слоистых структур исследована логарифмическая особенность функции Грина. Показано, что наличие логарифма добавляет к функции Грина константу, значение которой может быть получено численно. Показано, что использование дискретного преобразования Фурье добавляет к функции Грина константу, значение которой может быть получено аналитически. Для определения точности нахождения функции Грина представлены 3 тестовые задачи. На их примере показано, что точность нахождения функции Грина не зависит от числа слоев в рассматриваемой структуре, а зависит от изменяемых параметров. Это позволяет контролировать точность результатов. Применение функции Грина для решения краевой задачи показало сильное влияние границ слоев на конечный результат при увеличении размера кругового отверстия.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
Интернет Авторизованные пользователи (не СПбПУ)
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 18
За последние 30 дней: 0
Подробная статистика