Детальная информация

Название Локальные и нелокальные динамические процессы в двумерных решётках: магистерская диссертация: 01.04.03
Авторы Осокина Алена Евгеньевна
Научный руководитель Порубов А. В.
Организация Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Выходные сведения Санкт-Петербург, 2017
Коллекция Выпускные квалификационные работы ; Общая коллекция
Тематика ауксетичные свойства ; нелокальные модели ; дисперсионное соотношение ; линейный анализ
Тип документа Выпускная квалификационная работа магистра
Тип файла PDF
Язык Русский
Уровень высшего образования Магистратура
Код специальности ФГОС 01.04.03
Группа специальностей ФГОС 010000 - Математика и механика
DOI 10.18720/SPBPU/2/v17-6878
Права доступа Доступ по паролю из сети Интернет (чтение, печать, копирование)
Ключ записи RU\SPSTU\edoc\50149
Дата создания записи 04.12.2017

Разрешенные действия

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа Анонимные пользователи
Сеть Интернет

В данной работе изучается возможность наличия связи между нелокальным описанием (т.е. учётом взаимодействия рассматриваемой частицы с соседями более дальнего порядка) и проявлением ауксетичных свойств (отрицательностью коэффициента Пуассона) у материалов, обладающих квадратной кристаллической решёткой, а также вводится новый формализм, призванный упростить вывод нелокальных уравнений. Для этого метод построения модели основывается на использовании операторов сдвига и генерации нелокальных моделей любого порядка как функций локальной. Целью использования подобного подхода является желание выяснить, какие дополнительные эффекты привносит в модель учёт нелокальных взаимодействий, а также понять, как нелокальность влияет на упругие константы, т. e., каким образом они меняются при переходе от локального описания к нелокальному. Также, линейный анализ используется для изучения особенностей дисперсионного соотношения, обусловленных включением в рассмотрение более дальних взаимодействий на основе длинноволнового приближения плоской волны. Кроме того, континуальный предел позволяет увидеть влияние введения дополнительных дальних взаимодействий на ауксетическое поведение модели. Вышеперечисленное применяется к квадратной кристаллической решётке, представленной как совокупность частиц с одинаковыми массами, соединённых пружинами.

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ
Прочитать Печать Загрузить
Интернет Анонимные пользователи

Количество обращений: 175 
За последние 30 дней: 0

Подробная статистика