Детальная информация

Название: Локальные и нелокальные динамические процессы в двумерных решётках: магистерская диссертация: 01.04.03
Авторы: Осокина Алена Евгеньевна
Научный руководитель: Порубов А. В.
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Выходные сведения: Санкт-Петербург, 2017
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: ауксетичные свойства; нелокальные модели; дисперсионное соотношение; линейный анализ
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 01.04.03
Группа специальностей ФГОС: 010000 - Математика и механика
DOI: 10.18720/SPBPU/2/v17-6878
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

В данной работе изучается возможность наличия связи между нелокальным описанием (т.е. учётом взаимодействия рассматриваемой частицы с соседями более дальнего порядка) и проявлением ауксетичных свойств (отрицательностью коэффициента Пуассона) у материалов, обладающих квадратной кристаллической решёткой, а также вводится новый формализм, призванный упростить вывод нелокальных уравнений. Для этого метод построения модели основывается на использовании операторов сдвига и генерации нелокальных моделей любого порядка как функций локальной. Целью использования подобного подхода является желание выяснить, какие дополнительные эффекты привносит в модель учёт нелокальных взаимодействий, а также понять, как нелокальность влияет на упругие константы, т. e., каким образом они меняются при переходе от локального описания к нелокальному. Также, линейный анализ используется для изучения особенностей дисперсионного соотношения, обусловленных включением в рассмотрение более дальних взаимодействий на основе длинноволнового приближения плоской волны. Кроме того, континуальный предел позволяет увидеть влияние введения дополнительных дальних взаимодействий на ауксетическое поведение модели. Вышеперечисленное применяется к квадратной кристаллической решётке, представленной как совокупность частиц с одинаковыми массами, соединённых пружинами.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
Интернет Авторизованные пользователи (не СПбПУ)
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 14
За последние 30 дней: 0
Подробная статистика