Details

Title: Electrochromic windows for improving energy efficiency of the building in heating dominated climate: master’s graduate qualification work: 08.04.01 - Construction ; 08.04.01_14 - Energy Efficient and Sustainable Building
Creators: Mishin D. V.
Scientific adviser: Radaev A. E.
Organization: Peter the Great St. Petersburg Polytechnic University. Institute of Civil Engineering
Imprint: Saint-Petersburg, 2018
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Энергия — Экономия; Климат; Окна; Здания и постройки — Теплоизоляция; электрохромные окна; динамические окна; умные окна
UDC: 699.86; 692.82
Document type: Master graduation qualification work
File type: PDF
Language: English
Speciality code (FGOS): 08.04.01
Speciality group (FGOS): 080000 - Техника и технологии строительства
Links: Отзыв руководителя; Рецензия
DOI: 10.18720/SPBPU/2/v18-1553
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

This work is aimed at improving the energy efficiency of buildings in a cold climate. The application of the technology of dynamic electrochromic windows alternative to traditional types of windows is considered. The main goal of the work is to identify the value of efficiency of electrochromic windows in heating dominated climates. Comparison with traditional types of glazing and modeling them in different climatic regions is made. Based on the results of the work, the graphical dependence of the change of efficiency value of electrochromic windows depending on the climate in which it was applied.

Данная работа посвящена повышению энергоэффективности зданий в холодном климате. Рассматривается применение альтернативной традиционным типам окон технологии динамических электрохромных окон. Цель работы - это выявление уровня эффективности данных окон в регионах, где основным источником потребления энергии является отопление. Проведено сравнение с традиционными видами остекления и моделирование их в различных климатических регионах. По результатам проведенной работы представлена графическая зависимость изменения уровня эффективности электрохромных окон в зависимости от климата, в котором он применялись.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Table of Contents

  • Introduction
  • 1 Background and technology overview
    • 1.1. Windows
    • 1.2. History of glass and windows
    • 1.3. Window types
    • 1.4. Window physics
      • 1.4.1. Solar spectrum
      • 1.4.2. Optical properties
      • 1.4.3. Thermal properties
    • 1.5. Window performance indicators
      • 1.5.1. U-Factor
      • 1.5.2. Solar heat gain coefficient
      • 1.5.3. Visible Transmittance
      • 1.5.4. Air Leakage
      • 1.5.5. Condensation Resistance
    • 1.6. Windows technologies and glazing types
      • 1.6.1. Multiple layers
        • 1.6.1.1. Suspended films
      • 1.6.2. Low-Emittance Coatings
        • 1.6.2.1. High-Solar-Gain Low-Emittance Coatings
        • 1.6.2.2. Moderate-Solar-Gain Low-Emittance Coatings
        • 1.6.2.3. Low-Solar-Gain Low-Emittance Coatings
        • 1.6.2.4. Coating Placement
      • 1.6.3. Low-Conductance Gas Fills
      • 1.6.4. Shading systems
    • 1.7. Smart windows
      • 1.7.1. Photochromic
      • 1.7.2. Thermochromic
      • 1.7.3. Electrochromic
      • 1.7.4. Gasochromic Windows
      • 1.7.5. Liquid Crystal Device
    • 1.8. Electrochromic technology
      • 1.8.1. Electrochromism
      • 1.8.2. Tungsten oxide
      • 1.8.3. Other electrochromic metal oxides
        • 1.8.3.1. Nickel oxide
        • 1.8.3.2. Iridium oxide
        • 1.8.3.3. Niobium oxide
        • 1.8.3.4. Other inorganic electrochromics
      • 1.8.4. Polymer electrochromics
        • 1.8.4.1. Polyaniline
        • 1.8.4.2. Poly (3, 4-ethylenedioxythiophene)
      • 1.8.5. All-solid-state electrochromic windows and devices
        • 1.8.5.1. Tungsten-based electrochromic windows
        • 1.8.5.2. Non-tungsten-based electrochromic windows
        • 1.8.5.3. Photovoltaic integrated electrochromic devices
        • 1.8.5.4. All-solid-state switchable mirrors
    • 1.9. Control strategies
    • 1.10. Electrochromic windows
    • 1.11. Window costs
    • 1.12. Building energy simulation
    • Chapter summary
  • Chapter 2
    • 2.
    • 2.1. Building general information
      • 2.1.1. Glazing of the building
      • 2.1.2. Characteristics of walls, ceiling, basement
      • 2.1.3. Lighting Analysis
      • 2.1.4. HVAC systems
    • 2.2. Climate data
    • 2.3. Electrochromic IGU model
  • Chapter 3
    • 3.
    • 3.1. Electricity consumption
      • 3.1.1. Zone 1 (Los Angeles) electricity consumption
      • 3.1.2. Zone 2 (New York) electricity consumption
      • 3.1.3. Zone 3 (International Falls) electricity consumption
      • 3.1.4. Zone 4 (Barrow) electricity consumption
      • 3.1.5. Summary electricity consumption
    • 3.2. Peak loads
      • 3.2.1. Zone 1 (Los Angeles) peak loads
      • 3.2.2. Zone 2 (New York) peak loads
      • 3.2.3. Zone 3 (International Falls) peak loads
      • 3.2.4. Zone 4 (Barrow) peak loads
      • 3.2.5. Summary peak loads
    • 3.3. Economical aspects
    • 3.4. Summary results
  • Conclusion
  • References
  • Appendix A
  • Appendix B
  • Appendix C

Usage statistics

stat Access count: 35
Last 30 days: 0
Detailed usage statistics