Details

Title Методика решения задачи анализа тональности русскоязычных текстов при разработке веб-приложений: выпускная квалификационная работа магистра: 09.04.03 - Прикладная информатика
Creators Кучурина Анастасия Андреевна
Scientific adviser Иванищев Алексей Вячеславович
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт промышленного менеджмента, экономики и торговли
Imprint Санкт-Петербург, 2018
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Искусственный интеллект ; Нейронные сети ; Интернет ; естественные языки ; анализ тональности ; веб-разработка
UDC 004.8(043.3) ; 004.738.5(043.3) ; 004.032.26(043.3) ; 004.657(043.3)
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.03
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/2/v18-339
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key RU\SPSTU\edoc\52139
Record create date 3/21/2018

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Объектом исследования является анализ тональности русскоязычных текстов и его инструменты. Цель работы - разработка методики создания систем анализа тональности русскоязычных текстов инструментами веб-разработки. Исследованы методы анализа тональности текстов и программные инструменты для их реализации. Цель - разработка методики создания системы анализа тональности русскоязычных текстов при веб-разработке. Проанализированы научные статьи и учебные ресурсы, построена типология методов анализа тональности текстов, изучена насыщенность рынка готовыми инструментами анализа тональности русскоязычных текстов, выявлены незакрытые ниши в соответствии с инструментами разработки, изучены методы предварительной обработки данных. Составлена методика подготовки и обработки входящих данных и создана двухслойная нейронная сеть, анализирующая тональность текстов.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • ВВЕДЕНИЕ
  • ГЛАВА 1. МЕТОДЫ АНАЛИЗА ТОНАЛЬНОСТИ ТЕКСТОВ
    • 1.1. Правила
    • 1.2. Тональные словари
    • 1.3. Машинное обучение
      • 1.3.1. Машинное обучение с учителем
      • 1.3.2 Машинное обучение без учителя
    • 1.4. Нейронные сети
    • 1.5. Выбор оптимальных методов анализа тональности для задач прикладной информатики
  • ГЛАВА 2. ОБЗОР СУЩЕСТВУЮЩИХ СИСТЕМ АНАЛИЗА ТОНАЛЬНОСТИ ТЕКСТОВ
    • 2.1. Обзор рыночных аналогов
    • 2.2 . Обзор программного обеспечения
  • ГЛАВА 3. РАЗРАБОТКА СИСТЕМЫ АНАЛИЗА ТОНАЛЬНОСТИ РУССКОЯЗЫЧНЫХ ТЕКСТОВ ДЛЯ ЦЕЛЕЙ ВЕБ-РАЗРАБОТКИ
    • 3.1. Сбор данных для обучения модели
    • 3.2. Нормализация входных данных
      • 3.2.1. Стемминг
      • 3.2.2. Лемматизация
    • 3.3. Векторное представление слов
      • 3.3.1. Word Embedding
      • 3.3.2. One-hot encoding
      • 3.3.3. Дистрибутивные вектора
    • 3.4. Процесс разработки модуля для анализа тональности
      • 3.4.1. Подготовка данных
      • 3.4.2. Детали разработки нейронной сети
        • 3.4.2.1. Входящие данные
        • 3.4.2.2. Описание математической задачи
        • 3.4.2.3. Результаты работы построенной модели
    • 3.5. Методика анализа тональности русскоязычных текстов
  • ЗАКЛЮЧЕНИЕ
  • Список использованных источников
  • Приложение 1.
  • Метод, запускающий обучение модели нейронной сети

Access count: 769 
Last 30 days: 1

Detailed usage statistics