Details
Title | Модель автокодера при интервальных и многозначных данных: выпускная квалификационная работа магистра: 09.04.04 - Программная инженерия ; 09.04.04_01 - Технология разработки и сопровождения качественного программного продукта |
---|---|
Creators | Подольская Анна Владимировна |
Scientific adviser | Никифоров Игорь Валерьевич |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий |
Imprint | Санкт-Петербург, 2018 |
Collection | Выпускные квалификационные работы ; Общая коллекция |
Subjects | Нейронные сети ; Программирования языки ; автокодеры |
UDC | 004.032.26 ; 004.438 |
Document type | Master graduation qualification work |
File type | Other |
Language | Russian |
Level of education | Master |
Speciality code (FGOS) | 09.04.04 |
Speciality group (FGOS) | 090000 - Информатика и вычислительная техника |
Links | Отзыв руководителя ; Рецензия |
DOI | 10.18720/SPBPU/2/v18-5988 |
Rights | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Record key | RU\SPSTU\edoc\58537 |
Record create date | 11/30/2018 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
В работе рассматривается новая модель автокодера при интервальных или многозначных обучающих данных. Первая идея, лежащая в основе автокодера, базируется на преобразовании интервальной ошибки реконструкции (функции потерь), определенной на расширенном множестве точных обучающих данных. Обучающее множество интервальных данных расширяется, но каждый новый точечный элемент обучающего множества имеет неизвестную вероятность. Вторая идея – это робастная стратегия принятия решений, заключающаяся в том, что автокодер минимизирует верхнюю границу ожидаемых потерь на множестве параметров нейронной сети. В результате модель была реализована на языке python. Автокодер может использоваться для уменьшения размерности и точного робастного представления интервальных данных. Приведенные численные эксперименты на примере разработанной модели и рассмотренных существующих методов анализа интервальных данных иллюстрируют эффективность интервального автокодера.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
Access count: 127
Last 30 days: 0