Детальная информация

Название Advanced monitoring techniques: tutorial
Авторы Fomicheva Elizaveta V.
Организация Санкт-Петербургский политехнический университет Петра Великого
Выходные сведения Saint-Petersburg, 2022
Электронная публикация 2023
Коллекция Учебная и учебно-методическая литература ; Общая коллекция
Тематика Безопасность жизнедеятельности человека ; Детекторы ионизирующих излучений ; Ионизирующие излучения — Регистрация
УДК 614.8(075.8) ; 539.1.074(075.8) ; 539.16.07(075.8)
Тип документа Учебник
Тип файла PDF
Язык Английский
Код специальности ФГОС 20.00.00
Группа специальностей ФГОС 200000 - Техносферная безопасность и природообустройство
DOI 10.18720/SPBPU/2/z23-16
Права доступа Свободный доступ из сети Интернет (чтение, печать)
Ключ записи RU\SPSTU\edoc\70634
Дата создания записи 02.05.2023

Разрешенные действия

Прочитать

Группа Анонимные пользователи
Сеть Интернет
Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все
Прочитать Печать
Интернет Все
  • CONTENTS
  • ABBREVIATIONS
  • INTRODUCTION
  • 1. Modern methods of ionizing radiation detection
  • 1.1. Basic properties of radiation detectors
  • 1.1.1. First radiation detectors
  • 1.1.2. Application of radiation detectors
  • 1.1.3. Basic principles of radiation detectors
  • 1.1.4. Classification of Radiation Detectors
  • 1.1.4.1. Classification with purposes of application
  • 1.1.4.2. Classification with type of radiation detected
  • 1.2. Gas-filled radiation detectors
  • 1.2.1. Basic Principle of Gaseous Ionization Detectors
  • 1.2.2. Operating Regions of Ionizing Detectors – Detector Voltage
  • 1.2.3. Types of gaseous ionization radiation detectors
  • 1.2.3.1. Ionization Chamber
  • 1.2.3.2. Proportional Counter
  • 1.2.3.3. Geiger-Mueller Counters
  • 1.3. Semiconductor lonizing-Radiation Detectors
  • 1.3.1. Germanium Semiconductor Detectors
  • 1.3.2. Silicon Semiconductor Detectors
  • 1.3.3. Cadmium Zinc Telluride Detectors
  • 1.4. Scintillation detectors
  • 1.4.1. Inorganic Scintillation Detectors
  • 1.4.2. Organic Scintillation Detectors
  • 1.5. Luminescent detectors
  • 1.5.1. Thermally stimulated luminescence detectors
  • 1.5.2. Optically stimulated luminescence detectores (OSL)
  • 2. Dosimetric control and monitoring
  • 2.1. Dose concept
  • 2.2. Individual dosimetric control of external exposure
  • 2.2.1. The Pocket Ion Chamber dosimeters
  • 2.2.2. The Film Badge
  • 2.2.3. The Thermoluminescent Dosimeters
  • 2.2.4. Electronic Personal Dosimeters
  • 2.3. Individual dosimetric monitoring of internal exposure
  • 2.3.1. Main sources of long-term internal human exposure
  • 2.3.2. Determination of internal doses
  • 2.4. Cytogenetic dosimetry
  • 2.5. Dosimetric monitoring
  • 2.5.1. Hand radionuclides identification device
  • 2.5.2. Area dosimeter
  • 3. Modern spectrometry technologies
  • 3.1. Counting and spectroscopy systems
  • 3.1.1. Counting systems
  • 3.1.2. Spectroscopy systems
  • 3.1.3. Detection efficiency
  • 3.1.4. Timing characteristics
  • 3.2. Spectroscopy of photons
  • 3.2.1. Gamma Ray Spectrometer
  • 3.2.1.1. HPGe detectors spectroscopy
  • 3.2.1.2. CdZnTe detectors spectroscopy
  • 3.2.2.1. LaBr detectors spectroscopy
  • 3.3. Spectroscopy of charged particles
  • 3.3.1. An alpha particles spectroscopy
  • 3.3.2. A beta particles spectroscopy
  • 3.4. Spectroscopy of neutrons
  • 3.4.1. Neutron detectors
  • 3.4.2. Slow-neutron detectors
  • 3.4.3. Fast-neutron detectors
  • 4. Environmental monitoring technologies
  • 4.1. Emergency monitoring strategy
  • 4.1.1. Purposes of emergency monitoring
  • 4.1.2. Controlled parameters of the environment
  • 4.1.3. Working regimes of emergency monitoring
  • 4.1.3.1. The notification phase
  • 4.1.3.2. The pre-release phase
  • 4.1.3.3. The release and immediate post-release phase
  • 4.1.3.4. The intermediate phase
  • 4.1.3.5. The recovery phase
  • 4.1.4. Geographic location
  • 4.1.4.1. Urgent protective action planning zone
  • 4.1.4.2. Food and agricultural restriction area
  • 4.1.4.3. Area farther from release site
  • 4.2. Emergency monitoring elements
  • 4.2.1. Types of radiation monitoring
  • 4.2.1.1. Source monitoring
  • 4.2.1.2. Environmental monitoring
  • 4.2.1.3. Individual monitoring
  • 4.2.2. The technique used to measure the physical quantity
  • 4.2.2.1. Meteorological data
  • 4.2.2.2. Ambient dose rate and dose
  • 4.2.2.3. Airborne radionuclide concentration
  • 4.2.2.4. Environmental deposition
  • 4.2.2.5. Food, water and environmental contamination
  • 4.2.2.6. Individual dose
  • 4.2.2.7. Object surface contamination
  • 4.2.3. Environmental Sampling in emergencies
  • 4.2.3.1. Air
  • 4.2.3.2. Grass
  • 4.2.3.3. Soil
  • 4.2.3.4. Water
  • 4.3. Radiation monitoring systems
  • 4.3.1. Current technology RMS
  • 4.3.2. Radiation Detectors
  • 4.3.3. Data Transmission
  • 4.3.4. Data Analysis
  • 4.3.5. Product Design Variations
  • 4.3.6. Emergency Response Application
  • 5. Radiation mapping and source localization
  • 5.1. Imaging techniques for gamma sources
  • 5.2. Stationary imaging systems for gamma sources
  • 5.3. Small scale imaging systems for gamma sources
  • 5.4. Prospects for the use of a visualization system in mobile robotic complexes
  • 6. International Radiation Monitoring Information System
  • 6.1. Objectives of IRMIS
  • 6.2. Features of IRMIS
  • 6.2.1. Radiological monitoring data
  • 6.2.2. Routine Data
  • 6.2.3. Emergency Data
  • 6.2.4. Data ownership and retention
  • 6.2.5. Access to IRMIS and IRMIS users
  • 6.2.6. Data confidentiality
  • 6.2.7. Customization
  • Conclusion
  • References

Количество обращений: 70 
За последние 30 дней: 6

Подробная статистика