Table | Card | RUSMARC | |
Allowed Actions: Read Group: Anonymous Network: Internet |
Table of Contents
- CONTENTS
- ABBREVIATIONS
- INTRODUCTION
- 1. Modern methods of ionizing radiation detection
- 1.1. Basic properties of radiation detectors
- 1.1.1. First radiation detectors
- 1.1.2. Application of radiation detectors
- 1.1.3. Basic principles of radiation detectors
- 1.1.4. Classification of Radiation Detectors
- 1.1.4.1. Classification with purposes of application
- 1.1.4.2. Classification with type of radiation detected
- 1.2. Gas-filled radiation detectors
- 1.2.1. Basic Principle of Gaseous Ionization Detectors
- 1.2.2. Operating Regions of Ionizing Detectors – Detector Voltage
- 1.2.3. Types of gaseous ionization radiation detectors
- 1.2.3.1. Ionization Chamber
- 1.2.3.2. Proportional Counter
- 1.2.3.3. Geiger-Mueller Counters
- 1.3. Semiconductor lonizing-Radiation Detectors
- 1.3.1. Germanium Semiconductor Detectors
- 1.3.2. Silicon Semiconductor Detectors
- 1.3.3. Cadmium Zinc Telluride Detectors
- 1.4. Scintillation detectors
- 1.4.1. Inorganic Scintillation Detectors
- 1.4.2. Organic Scintillation Detectors
- 1.5. Luminescent detectors
- 1.5.1. Thermally stimulated luminescence detectors
- 1.5.2. Optically stimulated luminescence detectores (OSL)
- 2. Dosimetric control and monitoring
- 2.1. Dose concept
- 2.2. Individual dosimetric control of external exposure
- 2.2.1. The Pocket Ion Chamber dosimeters
- 2.2.2. The Film Badge
- 2.2.3. The Thermoluminescent Dosimeters
- 2.2.4. Electronic Personal Dosimeters
- 2.3. Individual dosimetric monitoring of internal exposure
- 2.3.1. Main sources of long-term internal human exposure
- 2.3.2. Determination of internal doses
- 2.4. Cytogenetic dosimetry
- 2.5. Dosimetric monitoring
- 2.5.1. Hand radionuclides identification device
- 2.5.2. Area dosimeter
- 3. Modern spectrometry technologies
- 3.1. Counting and spectroscopy systems
- 3.1.1. Counting systems
- 3.1.2. Spectroscopy systems
- 3.1.3. Detection efficiency
- 3.1.4. Timing characteristics
- 3.2. Spectroscopy of photons
- 3.2.1. Gamma Ray Spectrometer
- 3.2.1.1. HPGe detectors spectroscopy
- 3.2.1.2. CdZnTe detectors spectroscopy
- 3.2.2.1. LaBr detectors spectroscopy
- 3.3. Spectroscopy of charged particles
- 3.3.1. An alpha particles spectroscopy
- 3.3.2. A beta particles spectroscopy
- 3.4. Spectroscopy of neutrons
- 3.4.1. Neutron detectors
- 3.4.2. Slow-neutron detectors
- 3.4.3. Fast-neutron detectors
- 4. Environmental monitoring technologies
- 4.1. Emergency monitoring strategy
- 4.1.1. Purposes of emergency monitoring
- 4.1.2. Controlled parameters of the environment
- 4.1.3. Working regimes of emergency monitoring
- 4.1.3.1. The notification phase
- 4.1.3.2. The pre-release phase
- 4.1.3.3. The release and immediate post-release phase
- 4.1.3.4. The intermediate phase
- 4.1.3.5. The recovery phase
- 4.1.4. Geographic location
- 4.1.4.1. Urgent protective action planning zone
- 4.1.4.2. Food and agricultural restriction area
- 4.1.4.3. Area farther from release site
- 4.2. Emergency monitoring elements
- 4.2.1. Types of radiation monitoring
- 4.2.1.1. Source monitoring
- 4.2.1.2. Environmental monitoring
- 4.2.1.3. Individual monitoring
- 4.2.2. The technique used to measure the physical quantity
- 4.2.2.1. Meteorological data
- 4.2.2.2. Ambient dose rate and dose
- 4.2.2.3. Airborne radionuclide concentration
- 4.2.2.4. Environmental deposition
- 4.2.2.5. Food, water and environmental contamination
- 4.2.2.6. Individual dose
- 4.2.2.7. Object surface contamination
- 4.2.3. Environmental Sampling in emergencies
- 4.2.3.1. Air
- 4.2.3.2. Grass
- 4.2.3.3. Soil
- 4.2.3.4. Water
- 4.3. Radiation monitoring systems
- 4.3.1. Current technology RMS
- 4.3.2. Radiation Detectors
- 4.3.3. Data Transmission
- 4.3.4. Data Analysis
- 4.3.5. Product Design Variations
- 4.3.6. Emergency Response Application
- 5. Radiation mapping and source localization
- 5.1. Imaging techniques for gamma sources
- 5.2. Stationary imaging systems for gamma sources
- 5.3. Small scale imaging systems for gamma sources
- 5.4. Prospects for the use of a visualization system in mobile robotic complexes
- 6. International Radiation Monitoring Information System
- 6.1. Objectives of IRMIS
- 6.2. Features of IRMIS
- 6.2.1. Radiological monitoring data
- 6.2.2. Routine Data
- 6.2.3. Emergency Data
- 6.2.4. Data ownership and retention
- 6.2.5. Access to IRMIS and IRMIS users
- 6.2.6. Data confidentiality
- 6.2.7. Customization
- Conclusion
- References
Usage statistics
|
Access count: 30
Last 30 days: 0 Detailed usage statistics |