С 17 марта 2020 г. для ресурсов (учебные, научные, материалы конференций, статьи из периодических изданий, авторефераты диссертаций, диссертации) ЭБ СПбПУ, обеспечивающих образовательный процесс, установлен особый режим использования. Обращаем внимание, что ВКР/НД не относятся к этой категории.

Details

Title: Применение методов глубокого обучения для выявления вредоносных Android-приложений: выпускная квалификационная работа специалиста: 10.05.03 - Информационная безопасность автоматизированных систем ; 10.05.03_08 - Анализ безопасности информационных систем
Creators: Игнатьев Глеб Юрьевич
Scientific adviser: Павленко Евгений Юрьевич
Other creators: Резединова Евгения Юрьевна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт промышленного менеджмента, экономики и торговли
Imprint: Санкт-Петербург, 2018
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: информационная безопаcность; безопасность мобильных устройств; google android; вредоносное программного обеспечение; статический анализ приложения; глубокое обучение; information security; mobile security; malware; application static analysis; deep learning
Document type: Specialist graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 10.05.03
Speciality group (FGOS): 100000 - Информационная безопасность
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2018/vr/vr18-113
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

В настоящей выпускной квалификационной работе представлен подход к выявлению вредоносного программного обеспечения в Android ОС на основе глубокого обучения. В работе рассмотрены проблемы существующих подходов по анализу Android-приложения с использованием глубокого обучения, на основании которых предложен собственный подход, использующий сверточную нейронную сеть. Результаты экспериментальной оценки эффективность разработанного на основании подхода программного макета приведены и демонстрируют высокую вероятность обнаружения вредоносных Android-приложений.

This final learning. The paper discusses the problems of the existing approach-es to analyzing the Android application using deep training, based on which we pro-pose our own approach using a convolutional neural network. The paper reviews the drawbacks of the existing approaches to applications analysis using deep learning, based on which new approach is proposed using a convolutional neural network. The results of an experimental evaluation of the effectiveness of the proposed approach demonstrates a high probability Android malware applications detection.qualifying work presents an approach to Android malware detection based on deep.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Usage statistics

stat Access count: 318
Last 30 days: 0
Detailed usage statistics