С 17 марта 2020 г. для ресурсов (учебные, научные, материалы конференций, статьи из периодических изданий, авторефераты диссертаций, диссертации) ЭБ СПбПУ, обеспечивающих образовательный процесс, установлен особый режим использования. Обращаем внимание, что ВКР/НД не относятся к этой категории.

Details

Title: Анализ транзакций клиентов банка для выявления аномальных шаблонов поведения: выпускная квалификационная работа магистра: 09.04.04 - Программная инженерия ; 09.04.04_02 - Основы анализа и разработки приложений с большими объемами распределенных данных
Creators: Руденко Татьяна Федоровна
Scientific adviser: Дробинцев Павел Дмитриевич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2019
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Базы данных; прогнозирование данных; машинное обучение; анализ данных; паттерны поведения; антифрод система
UDC: 004.65(043.3); 004.031.43(043.3)
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 09.04.04
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-1180
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Выпускная квалификационная работа магистра посвящена анализу транзакций клиентов банка для выявления аномальных шаблонов поведения. В работе представлены результаты анализа существующих подходов к решению проблем мошенничества в банковской сфере, исследованы методы на основе алгоритмов машинного обучения. Приведено описание архитектуры банка, в которую можно встроить найденное решение. Представлены результаты тестирования и сделаны выводы об эффективности методов.

Graduate qualification work of the master degree is devoted to the analysis of bank customer transactions to identify abnormal patterns of behavior. In this thesis work, the results of an analysis of existing approaches to solving problems of fraud in the banking sector, and the research of methods based on machine learning algorithms. Shown a description of the bank architecture, in which the found solution can be embedded. Presented test results and conclusions about the effectiveness of the method.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics