Details

Title Алгоритмы анализа и прогнозирования уровня загруженности устройств самообслуживания: выпускная квалификационная работа бакалавра: направление 27.03.03 Системный анализ и управление ; образовательная программа 27.03.03_01 Теория и математические методы системного анализа и управления в технических, экономичеcких и социальных системах
Creators Никольская Анастасия Николаевна
Scientific adviser Нестеров Сергей Александрович
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2019
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects интеллектуальный анализ данных ; регрессия ; АТМ ; python ; линейная регрессия ; случайный лес ; градиентный бустинг ; data mining ; regression ; ATM ; linear regression ; random forest ; gradient boosting
Document type Bachelor graduation qualification work
File type PDF
Language Russian
Level of education Bachelor
Speciality code (FGOS) 27.03.03
Speciality group (FGOS) 270000 - Управление в технических системах
Links Отзыв руководителя ; Отчет о проверке на объем и корректность внешних заимствований
DOI 10.18720/SPBPU/3/2019/vr/vr19-3346
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ru\spstu\vkr\5758
Record create date 3/12/2020

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Объектом исследования является набор данных об устройствах самообслуживания. Целью работы является выявление закономерностей в данных, полученных при работе устройств самообслуживания с помощью методов интеллектуального анализа данных. В работе произведен обзор этапов и задач анализа данных, приведены необходимые понятия из теории вероятности и математической статистики, а также некоторые алгоритмы решения прикладных задач с примерами реализации на языке Python 3.

The object of the study is the dataset with information about ATMs. The aim of the work is to use data mining methods to identify patterns in the data obtained by the ATMs. The paper reviews data analysis stages and tasks, presents necessary concepts from the theory of probability and mathematical statistics. Algorithms for solving applied problems with examples of implementation in Python 3 are given.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 38 
Last 30 days: 0

Detailed usage statistics