Details

Title Программа анализа тональности текстов на основе методов машинного обучения: выпускная квалификационная работа бакалавра: 09.03.04 - Программная инженерия ; 09.03.04_01 - Технология разработки и сопровождения качественного программного продукта
Creators Бухалова Анастасия Дмитриевна
Scientific adviser Дробинцев Павел Дмитриевич
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2019
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects машинное обучение ; анализ тональности ; обработка естественного языка ; наивный байесовский классификатор ; нейронные сети ; метод опорных векторов ; machine learning ; sentiment analysis ; natural language processing ; naive bayes classifier ; neural network ; support vector machine
Document type Bachelor graduation qualification work
File type PDF
Language Russian
Level of education Bachelor
Speciality code (FGOS) 09.03.04
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
Links Отзыв руководителя ; Отчет о проверке на объем и корректность внешних заимствований
DOI 10.18720/SPBPU/3/2019/vr/vr19-4549
Rights Доступ по паролю из сети Интернет (чтение)
Record key ru\spstu\vkr\2609
Record create date 9/26/2019

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Group Anonymous
Network Internet

Работа посвящена разработке программы анализа тональности текстов на основе следующих методов машинного обучения: наивный байесовский классификатор, метод опорных векторов, нейронные сети. В главе 1 производится обзор подходов, применяемых в области анализа тональности, сложностей, встречающиеся при решении задач, и существующих исследований, анализирующих перечисленные подходы. В главе 2 рассматриваются суть задачи классификации, алгоритмы классификации, а также их математические модели. В главе 3 описывается программная реализация данных алгоритмов в применении к анализу пользовательских рецензий. Напоследок, в главе 4 приводится обзор собираемых метрик и производится анализ результатов.

The work is devoted to the development of a sentiment analysis program based on the following machine learning methods: naïve Bayes classifier, support vector machine and neural networks. Chapter 1 reviews the approaches used in the field of sentiment analysis, the difficulties encountered in solving its problems and existing studies that analyze the listed approaches. Chapter 2 discusses the essence of the classification problem, classification algorithms and their mathematical models. Chapter 3 describes the software implementation of these algorithms applied to the analysis of user reviews. Finally, Chapter 4 provides an overview of the metrics collected and contains analysis of the results.

Network User group Action
ILC SPbPU Local Network All
Read
Internet Authorized users SPbPU
Read
Internet Anonymous

Access count: 98 
Last 30 days: 2

Detailed usage statistics