Детальная информация

Название: Локализованные колебания струны на винклеровском основании с подвижным осциллятором: выпускная квалификационная работа магистра по направлению 01.04.03 - Механика и математическое моделирование ; 01.04.03_01 - Механика деформируемого твердого тела
Авторы: Порошин Илья Олегович
Научный руководитель: Гаврилов Сергей Николаевич
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Выходные сведения: Санкт-Петербург, 2019
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: Механика деформируемых тел; струна на винклеровском основании; одномерное уравнение Клейна-Гордона; локализованные моды колебаний; подвижный осциллятор
УДК: 539.3
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Код специальности ФГОС: 01.04.03
Группа специальностей ФГОС: 010000 - Математика и механика
Ссылки: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-4824
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Рассматриваются нестационарные локализованные колебания бесконечной струны на винклеровском основании с точечной неоднородностью (точечный осциллятор, движущийся с постоянной скоростью). В такой системе, при определенных условиях, существует единственная локализованная мода колебаний. Применение к этой системе внешнего воздействия может привести к появлению колебаний струны, локализованных вблизи неоднородности. Представлено аналитическое описание нестационарных локализованных колебаний в системе с подвижным осциллятором и некоторым внешнем воздействии, используя асимптотический метод стационарной фазы. Полученные аналитические результаты подтверждены независимыми численными расчетами. Применимость аналитических формул была продемонстрирована для различных типов внешнего воздействия и значений скорости. В частности, показано, что в данном случае локализованная мода исчезает раньше, чем скорость достигает скорости звука.

Non-stationary localized oscillations of an infinite string on the Winkler fondation with a point inhomogeneity (point moving oscillator) are considered. In such a system with constant parameters (fixed oscillator) under certain conditions, the mode of oscillations exists and is unique. Therefore, the application of nonstationary external excitation to this system can lead to the appearance of string oscillations localized near the inhomogeneity. We present an analytical description of nonstationary localized oscillations in a system with time-varying properties using an asymptotic procedure based on an asymptotic method, namely, method of the stationary phase. The obtained analytical results are confirmed by independent numerical calculations. The applicability of analytical formulas has been demonstrated for various types of external excitation and absolute speed values. In particular, it is shown that in this case the trapped mode disappears before the speed approaches the speed of sound.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
Интернет Авторизованные пользователи (не СПбПУ)
-> Интернет Анонимные пользователи

Оглавление

  • Введение
  • Аналитическое описание локализованных колебаний струны
    • Постановка задачи
    • Спектральная задача. Частотное уравнение
      • Случай ненулевой массы
      • Случай нулевой массы
      • Частота локализованой моды колебаний
    • Неоднородная задача
  • Численное решение задачи. Сравнение с аналитическим решением
  • Заключение
  • Список использованной литературы
  • Приложение 1

Статистика использования

stat Количество обращений: 20
За последние 30 дней: 0
Подробная статистика