Details

Title: Применение машинного обучения мониторинга процессов: выпускная квалификационная работа магистра по направлению 09.04.01 - Информатика и вычислительная техника ; 09.04.01_17 - Интеллектуальные системы (международная образовательная программа)
Creators: Шаффи Шан Ахмед
Scientific adviser: Потехин Вячеслав Витальевич
Other creators: Селиванова Елена Николаевна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2019
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Нейронные сети; Металлообработка; контролируемое машинное обучение; обработка сигнала; сбор данных; балансировка наборов данных; Смоте; МатЛаб
UDC: 004.032.26
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 09.04.01
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-5780
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

В настоящее время основные отрасли обрабатывающей промышленности прилагают все усилия для обеспечения минимальных потерь и максимальной прибыли. Для этого необходимо провести исследование производственных процессов, которые имеют тот или иной вид сбоев. Читая сигналы от машины, мы можем научиться у нее создавать модель, которая может обнаружить неисправность с помощью показаний сигнала и обеспечить принятие необходимых мер для предотвращения неисправности. Данный проект направлен на обнаружение сбоев в системе мониторинга процессов с использованием нейросетевого подхода. В рамках своих задач автор работал над сигналами, полученными в результате четырех различных процессов обработки. Обрабатывающие операции включают токарную обработку, сверление, фрезерование и торцевое фрезерование. Информация от этих сигналов была сегментирована, после чего были извлечены особенности и объединены. Таким образом, набор данных готов к работе. После этого информация была использована для обучения нейросетевой модели для обнаружения сбоя. Поскольку сбой приводит к потерям, было ограничение по количеству наборов данных о сбоях. Для решения этой проблемы была также обеспечена сбалансированность набора данных. Разработанная автором модель нейросетей показала отличные результаты при классификации хороших и плохих процессов на основе используемого набора данных. Для программирования модели использовалось программное обеспечение Матлаб. Был также проведен подробный анализ полученных результатов. Полученные результаты были использованы для изучения вариационного анализа параметров нейросетевой системы.

Nowadays, major manufacturing industries are striving hard to ensure minimum loss and maximum profit. A method to do so is to do research on the manufacturing processes which have some kind of failure. By reading the signals from the machine we can learn from it to create a model that could detect the failure by signal readings and ensure the necessary steps can be taken to avoid failure. This project deals with the detection of failures in a process monitoring system using a neural network approach. As part of his tasks, the author has worked on signals derived from four different machining processes. The machining operations are turning, drilling, milling and face milling. The information from these signals was segmented, following which features were extracted, and concatenated. Thus a data set was ready to work on. Following this, the information was used to train a neural network model to detect the failure. As failure causes losses, there was limitation in the amount of failure datasets. To tackle this problem, balancing of the dataset was also implemented. The neural network model designed by the author showed excellent results in classifying the good and bad processes based on the data set used. The software used for the programming of the model was Matlab. A detailed analysis was also done on the results obtained. The obtained results were then used for studying the parameter variation analysis of the neural network system.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users SPbPU Read Print Download
Internet Authorized users (not from SPbPU)
-> Internet Anonymous

Usage statistics

stat Access count: 26
Last 30 days: 0
Detailed usage statistics