Details

Title Система распознавания болезней растений по изображениям листьев на основе нечёткой логики и нейронной сети: выпускная квалификационная работа магистра: 09.04.04 - Программная инженерия ; 09.04.04_01 - Технология разработки и сопровождения качественного программного продукта
Creators Рябцев Игорь
Scientific adviser Тутыгин Владимир Семенович
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2019
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Распознающие системы и устройства ; Нейронные сети ; Изображения ; классификация изображений ; сверточная сеть ; нормализация изображения ; фаззификация изображения ; дефаззификация изображения ; нечеткая логика
UDC 004.93'1:632(043.3)
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.04
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
Links Отзыв руководителя ; Рецензия ; Отчет о проверке на объем и корректность внешних заимствований
DOI 10.18720/SPBPU/3/2019/vr/vr19-588
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ru\spstu\vkr\2398
Record create date 9/26/2019

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Цель разработки – реализация программы классификации болезни растения по изображению листа больного растения. Рассмотрены существующие методы и предложены новые методы классификации болезни растения. Проведено тестирование предложенных методов классификации болезней растений по изображению листа на реальных и смоделированных данных, разработаны и реализованы программы на языке Python, используя библиотеки Keras и TensorFlow для нормализации и классификации болезней растений.

The purpose of the development is the implementation of a plant disease classification program based on the leaf image of a diseased plant. Existing methods are considered and new methods of plant disease classification are proposed. The proposed methods for classifying plant diseases according to a leaf image on real and modeled data were tested, and Python programs were developed and implemented using the Keras and TensorFlow libraries to normalize and classify plant diseases.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 129 
Last 30 days: 0

Detailed usage statistics