Details
Title | Программа по определению внешне различимых дефектов автомобиля на основе машинного обучения: выпускная квалификационная работа бакалавра: 09.03.04 - Программная инженерия ; 09.03.04_01 - Технология разработки и сопровождения качественного программного продукта |
---|---|
Creators | Посметныйс Денисс |
Scientific adviser | Амосов Владимир Владимирович |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий |
Imprint | Санкт-Петербург, 2019 |
Collection | Выпускные квалификационные работы ; Общая коллекция |
Subjects | искусственный интеллект ; машинное обучение ; распознавание образов ; компьютерное зрение ; искусственная нейронная сеть ; сверточная нейронная сеть ; глубокое обучение ; метод водораздела ; автомобили ; визуальный анализ ; artificial intelligence ; machine learning ; pattern recognition ; computer vision ; artificial neural network ; convolutional neural network ; deep learning ; watershed method ; cars ; visual analysis |
Document type | Bachelor graduation qualification work |
File type | |
Language | Russian |
Level of education | Bachelor |
Speciality code (FGOS) | 09.03.04 |
Speciality group (FGOS) | 090000 - Информатика и вычислительная техника |
Links | Отзыв руководителя ; Отчет о проверке на объем и корректность внешних заимствований |
DOI | 10.18720/SPBPU/3/2019/vr/vr19-595 |
Rights | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Record key | ru\spstu\vkr\1146 |
Record create date | 8/26/2019 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
Целью данной работы является исследование возможностей методов компьютерного зрения для определения дефектных автомобилей в потоке движения. Целостность, а также соответствие нормам является необходимым фактором безопасности движения и предотвращения дорожно-транспортных происшествий, вызванных некорректным техническим состоянием транспортного средства. Результатом данной работы является классификатор способный определить дефекты транспортных средств по их визуальному анализу с целью дальнейшей передачи данных в дорожно-патрульную службу.
The purpose of this work is to study the capabilities of computer vision methods for determining defective vehicles in traffic. Integrity, as well as compliance with standards, is a necessary factor for traffic safety and the prevention of road accidents caused by the incorrect technical condition of the vehicle. The result of this work is the classifier able to determine the defects of vehicles by their visual analysis for the purpose of further data transfer to the police station in order to manipulate owners of defective cars. The results of this work can be applied in various fields related to the control of the technical condition of vehicles on large highways and automatic visual inspection.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
- Введение
- 1. Теоретическая часть
- 1.1. Глубокое обучение (распознавание образов)
- 1.2. Основы изображений
- 1.3. Классификация изображений
- 1.4. Параметризированное обучение
- 1.5. Пример процесса линейной классификации
- 1.5.1. Функция потери
- 1.6. Основы нейронных сетей
- 1.7. Распознавание и локализация образов
- 1.7.1. Метод Виолы-Джонса
- 1.7.2. Визуальные словари
- 1.7.3. Гистограммы градиентов
- 1.7.4. Сверточные нейронные сети
- 2. Практическая часть
- 2.1. Аппаратная часть распознавания автомобилей
- 2.2. Выбор метода сегментации изображения
- 2.2.1. Метод пороговых значений и контуров
- 2.2.2. Пример сегментации по водоразделам
- 2.3. Описание параллельного алгоритма
- 2.4. Обучающая выборка
- 2.5. Препроцессорная обработка
- 2.6. Пользовательский сервис для работы с CNN
- 2.7. Разработка модели CNN
- 2.7.1. Настройка конфигураций
- 2.7.2. Преобразование набора данных в модель
- 2.7.3. Создание Convolutional & Inception Module
- 3. Эксперименты и полученные результаты
- 3.1. Обучение сверточной нейронной сети
- 3.1.1. Эксперимент №1
- 3.1.2. Эксперимент №2
- 3.1.3. Эксперимент №3
- 3.2. Результаты классификации изображений.
- 3.1. Обучение сверточной нейронной сети
- Заключение
- Список использованных источников
Access count: 70
Last 30 days: 0