Details

Title Разработка и исследование робастных (минимаксных) моделей классификации и регрессии для малых выборок на основе случайных лесов: выпускная квалификационная работа магистра: 01.04.02 - Прикладная математика и информатика ; 01.04.02_01 - Математическое моделирование в науке и индустрии
Creators Ковалев Максим Сергеевич
Scientific adviser Уткин Лев Владимирович
Other creators Арефьева Людмила Анатольевна
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Imprint Санкт-Петербург, 2019
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects Функции (мат.) Дирихле ; Искусственный интеллект ; классификация ; регрессия ; случайный лес ; дерево решений ; машинное обучение ; робастная модель засорения ; доверительный интервал
UDC 517.537.6 ; 004.8 ; 519.246.85
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 01.04.02
Speciality group (FGOS) 010000 - Математика и механика
Links Отзыв руководителя ; Рецензия ; Отчет о проверке на объем и корректность внешних заимствований
DOI 10.18720/SPBPU/3/2019/vr/vr19-848
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ru\spstu\vkr\1999
Record create date 9/18/2019

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

В данной работе предложены робастные модификации алгоритма машинного обучения – случайный лес, которые используются для решения задач классификации и регрессии. Случайный лес реализуются с помощью построения множества деревьев решений и усреднения их результатов. Для выборок малого размера их результат нельзя рассматривать как точный. Основная идея модификаций состоит в замене обычного усреднения на взвешенное усреднение, при этом веса учитывают, что оценки деревьев решений являются неточными. Для этого точечные прогнозы заменяются на интервальные с помощью интервальных статистических моделей и доверительных интервалов. Предложены специальные модификации целевых функций в задачах классификации и регрессии, чтобы упростить задачи оптимизации для вычисления оптимальных весов.

In the given work, one proposes robust modifications of the machine learning algorithm, Random Forest, which are used to solve classification and regression problems. Random Forest is implemented by constructing a set of Decision Trees and averaging their estimates. For small samples, the estimates cannot be regarded as accurate. The main idea of the modifications is replacing the usual averaging by a weighted averaging in which weights take into account that the estimates of decision trees are imprecise. For this, point forecasts are replaced by interval forecasts using Imprecise Statistical Inference Models and Confidence Intervals. Special modifications of objective functions in classification and regression problems are proposed in order to simplify optimization problems for calculating optimal weights.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 64 
Last 30 days: 0

Detailed usage statistics