С 17 марта 2020 г. для ресурсов (учебные, научные, материалы конференций, статьи из периодических изданий, авторефераты диссертаций, диссертации) ЭБ СПбПУ, обеспечивающих образовательный процесс, установлен особый режим использования. Обращаем внимание, что ВКР/НД не относятся к этой категории.

Details

Title: Классификация городских звуков с помощью рекуррентных нейронных сетей: выпускная квалификационная работа бакалавра: 09.03.01 - Информатика и вычислительная техника ; 09.03.01_02 - Технологии разработки программного обеспечения
Creators: Леженин Юрий Игоревич
Scientific adviser: Богач Наталья Владимировна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2019
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: классификация звуков окружающей среды; нейронные сети с долгой краткосрочной памятью; сверточные нейронные сети; environmental sound classification; long short-term memory neural networks; convolutional neural networks
Document type: Bachelor graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 09.03.01
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-913
Rights: Свободный доступ из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Классификация звуков окружающей среды получила большое внимание в последние годы. Анализ звуков окружающей среды затруднен из-за их неструктурированной природы. Однако, наличие устойчивых частотно временных паттернов распределения энергии делает классификацию возможной. Поскольку нейронные сети архитектуры LSTM эффективны при обработке временных зависимостей, в данной работе описана и исследована модель на основе LSTM для классификации городских звуков. Модель обучена на амплитудных спектрограммах с нелинейным масштабом частоты в мелах, извлеченных из записей набора данных UrbanSound8K. Предложенная модель оценивается с использованием 5-кратной перекрестной проверки и сравнивается с базовой моделью на основе CNN. В данной работе показано, что модель на основе LSTM превосходит большинство существующих решений и является более точной и надежной, чем базовая модель на основе CNN.

Environmental sound classification has received more attention in recent years. Analysis of environmental sounds is difficult because of its unstructured nature. However, the presence of strong spectro-temporal patterns makes the classification possible. Since LSTM neural networks are efficient at learning temporal dependencies we propose and examine a LSTM model for urban sound classification. The model is trained on magnitude mel-spectrograms extracted from UrbanSound8K dataset audio. The proposed network is evaluated using 5-fold cross-validation and compared with the baseline CNN. It is shown that the LSTM model outperforms a set of existing solutions and is more accurate and confident than the baseline CNN.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Document usage statistics

stat Document access count: 55
Last 30 days: 2
Detailed usage statistics