Table | Card | RUSMARC | |
Allowed Actions: –
Action 'Read' will be available if you login or access site from another network
Group: Anonymous Network: Internet |
Annotation
Тема выпускной квалификационной работы: «Разработка модели цифровой копии энергообеспечения мышечной деятельности спортсмена с использованием методов искусственного интеллекта». Данная работа посвящена исследованию энергообеспечения мышечной деятельности спортсмена, в частности определения порога анаэробного обмена у спортсменов в циклических видах спорта. Задачи, которые решались в ходе исследования: 1) Изучены особенности определения порога анаэробного обмена 2) Рассмотрены существующие решения в области построения моделей организма человека, в частности способы определения порога анаэробного обмена 3) Выбран оптимальный метод машинного обучения для определения порога анаэробного обмена 4) Проанализированы результаты предсказания В результате было проведено исследование возможности применения алгоритмов машинного обучения для определения порога анаэробного обмена у спортсменов циклических видов спорта. Проведён сравнительный анализ существующих решений. Реализована система по предсказанию порога анаэробного обмена и интерпретации предсказаний с помощью метода Lime.
The topic of the final qualifying work: "Development of a model of a digital copy of the energy supply of an athlete's muscular activity using artificial intelligence methods". This work is devoted to the study of energy supply of muscular activity of an athlete, in particular, determining the threshold of anaerobic metabolism in athletes in cyclic sports. Tasks that were solved in the course of the study: 1) the peculiarities of determining the threshold of anaerobic metabolism were Studied 2) the existing solutions in the field of building models of the human body, in particular, methods for determining the threshold of anaerobic metabolism are Considered 3) Choosing the optimal machine learning method for determining the anaerobic exchange threshold 4) Interpretation of prediction results As a result, a study was conducted on the possibility of using machine learning algorithms to determine the threshold of anaerobic metabolism in cyclical sports athletes. A comparative analysis of existing solutions is carried out. A system for predicting the threshold of anaerobic metabolism and interpreting predictions using the Lime method is implemented.
Document access rights
Network | User group | Action | ||||
---|---|---|---|---|---|---|
ILC SPbPU Local Network | All |
![]() |
||||
External organizations N2 | All |
![]() |
||||
External organizations N1 | All | |||||
Internet | Authorized users SPbPU |
![]() |
||||
Internet | Authorized users (not from SPbPU, N2) |
![]() |
||||
Internet | Authorized users (not from SPbPU, N1) | |||||
![]() |
Internet | Anonymous |
Usage statistics
|
Access count: 4
Last 30 days: 0 Detailed usage statistics |