Table | Card | RUSMARC | |
Allowed Actions: –
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
Group: Anonymous Network: Internet |
Annotation
Тема выпускной квалификационной работы: «Анализ и улучшение организации трафика с помощью искусственных нейронных сетей». В данной работе рассматривается вопрос создания системы умных светофоров, использующих технологию нейронных сетей для регулирования и оптимизирования дорожного трафика. Цель работы: разработка нейронной сети для управления светофорами. Результаты работы: работа была поделена на два больших этапа. На первом, «локальном», этапе была создана нейронная сеть для одного светофора, контролирующего только один перекресток. Нейронная сеть обучилась и результатом этапа стало снижение времени простоя на 37% по сравнению со стандартным светофором с фиксированным временем смены сигналов. Второй этап заключался в создании полноценной транспортной сети. На втором этапе работы умные светофоры (созданные на первом этапе) были объединены в единую сеть. Реализованная система показала общее улучшение состояния транспортной сети. При рассмотрении 6-и часового периода средняя задержка каждого транспортного средства была снижена на 26%, а средняя скорость выросла на 19%. Как итог, были достигнуты многообещающие результаты, показывающие высокую эффективность данного подхода к решению поставленной задачи. Область применения: управление потоками дорожного транспорта в условиях городской среды.
Theme of this final qualifying work is "Analysis and improvement of traffic organization using artificial neural networks." This paper considers the issue of creating a system of smart traffic lights that use neural network technology to regulate and optimize road traffic. The aim of the work: development of a neural network for controlling traffic lights. The results: the work was divided into two large phases. At the first, “local”, phase a neural network was created for one traffic light (that controls only one crossroad). The neural network was trained and the result of the first phase was a 37% reduction in downtime (at a crossroad) compared to a standard traffic light with a fixed signal change time. At the second phase of work, smart traffic lights (those were created at the first stage) were combined into a network. The implemented system showed an overall improvement in the state of the transport network. Considered a 6-hour period, the average delay of a vehicle was reduced by 26%, and the average speed increased by 19%. In conclusion, promising results were achieved, showing the high efficiency of this approach for solving the problem. Scope of application: management of streams of road transport in the conditions of the urban environment.
Document access rights
Network | User group | Action | ||||
---|---|---|---|---|---|---|
ILC SPbPU Local Network | All |
![]() ![]() ![]() |
||||
External organizations N2 | All |
![]() |
||||
External organizations N1 | All | |||||
Internet | Authorized users SPbPU |
![]() ![]() ![]() |
||||
Internet | Authorized users (not from SPbPU, N2) |
![]() |
||||
Internet | Authorized users (not from SPbPU, N1) | |||||
![]() |
Internet | Anonymous |
Usage statistics
|
Access count: 12
Last 30 days: 0 Detailed usage statistics |