Details

Title: Разработка интеллектуальной подсистемы обнаружения и выделения новообразований в легком: выпускная квалификационная работа бакалавра: направление 02.03.01 «Математика и компьютерные науки» ; образовательная программа 02.03.01_01 «Вычислительные, программные, информационные системы и компьютерные технологии»
Creators: Тюльпин Виктор Андреевич
Scientific adviser: Уткин Лев Владимирович
Other creators: Голубева Ирина Эрнестовна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Imprint: Санкт-Петербург, 2020
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: глубокое обучение; cверточные нейронные сети; детекция объектов на изображении; компьютерная то­мография; обнаружение опухолей в легких; deep learning; convolutional neural networks; object detection on images; computer tomography; pulmonary nodules detection
Document type: Bachelor graduation qualification work
File type: PDF
Language: Russian
Level of education: Bachelor
Speciality code (FGOS): 02.03.01
Speciality group (FGOS): 020000 - Компьютерные и информационные науки
Links: Отзыв руководителя; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2020/vr/vr20-2683
Rights: Доступ по паролю из сети Интернет (чтение)
Record key: ru\spstu\vkr\8353

Allowed Actions:

Action 'Read' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Тема выпускной квалификационной работы: «Разработка интеллектуальной подсистемы обнаружения и выделения новообразований в легком». В дипломной работе рассматривается разработка архитектуры нейронной сети для решения задачи компьютерного зрения на снимках компьютерной томо­ графии: обнаружения новообразований в легком. В ходе работы решались следующие задачи: – Изучение методов автоматической компьютерной диагностики, – Исследование применения нейронных сетей к задаче компьютерного зрения – детекции, – Подготовка наборов данных, состоящих из множества КТ-снимков, для последующего обучения и тестирования разработанных моделей глубокого обучения, – Разработка архитектуры нейронной сети для обнаружения новообразова­ ний в легком на КТ-снимках, – Тестирование разработанной архитектуры нейронной сети на снимках компьютерной томографии. В результате работы был написан программный модуль на языке Python с применением библиотеки глубокого обучения PyTorch, обучающий нейронную сеть разработанной архитектуры. Для проведения экспериментов был использован публично доступный датасет LIDC-IDRI, для тестирования обученных сетей скрипт соревнования LUNA16. В результате среднее значение метрики Sensitivity – 0.978. В заключении работы представлены выводы и описаны возможные способы улучшения полученных результатов.

The subject of the graduate qualification work is "Development of an intellectual subsystem of pulmonary nodules detection". The diploma thesis deals with the development of neural network architecture to solve the problem of computer vision on the images of computer tomography: the detection of nodules in the lung. The following tasks were solved in the course of the work: – Research of automatic computer diagnostics methods, – Research of application of neural networks to the task of computer vision - object detection, – Preparation of data sets consisting of multiple CT images for further training and testing of developed models, – Development of a neural network architecture to detect pulmonary nodules in CT images, – Testing of the developed neural network architecture on computer tomography images. As a result of the work the program module in Python language was written using PyTorch deep learning library, which trains neural network of the developed architecture. For conducting experiments I used publicly available LIDC-IDRI datase, for testing the trained networks the LUNA16 competition script. As a result the average value of Sensitivity metric is 0.978. The paper concludes with a presentation of findings and a description of possible ways to improve the results obtained.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read
Internet Authorized users SPbPU Read
-> Internet Anonymous

Table of Contents

  • Разработка интеллектуальной подсистемы обнаружения и выделения новообразований в легком
    • Введение
    • 1. Системы автоматизированной медицинской диагностики новообразований в легком
    • 2. Решение задачи детекции с нейронными сетями
    • 3. Разработка архитектуры нейронной сети
    • 4. Тестирование и анализ результатов
    • Заключение
    • Список сокращений и условных обозначений
    • Список использованных источников

Usage statistics

stat Access count: 51
Last 30 days: 0
Detailed usage statistics