Details

Title: Традиционные и новые модели для оценки динамической текучести: выпускная квалификационная работа магистра: направление 01.04.03 «Механика и математическое моделирование» ; образовательная программа 01.04.03_02 «Механика и математическое моделирование (международная образовательная программа)»
Creators: Гупта Каран
Scientific adviser: Подольская Екатерина Александровна
Other creators: Хайбулова Евгения Александровна; Братов Владимир Андреевич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт прикладной математики и механики
Imprint: Санкт-Петербург, 2020
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Материалы — Испытание на прочность; динамика; МКЭ; медь; упрочнение
UDC: 620.17
Document type: Master graduation qualification work
File type: PDF
Language: English
Level of education: Master
Speciality code (FGOS): 01.04.03
Speciality group (FGOS): 010000 - Математика и механика
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2020/vr/vr20-2978
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key: ru\spstu\vkr\11102

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Работа посвящена исследованию имеющихся и разработке новых моделей динамической пластичности. Решалась задача о высокоскоростном ударе металлического цилиндра об условно недеформируемую преграду – так называемый динамический тест Тейлора. В сравнении с имеющимися экспериментальными данными о конечной деформированной форме цилиндра для различных начальных скоростей удара а также экспериментальными данными об изменении формы цилиндра в процессе удара для различных моментов времени, показаны недостатки известных моделей динамической пластичности. Видно, что такие подходы зачастую не могут уловить «физику» процесса динамического пластического деформирования металлов. Предложен новый подход, основанный на релаксационной модели схожей по форме с моделью Максвела. Показана перспективность нового подхода для описания динамики пластического деформирования металлов.

The work is devoted to the analysis of the existing and development of new models of dynamic plasticity. The problem of a high-velocity impact of a metal cylinder against an undeformable anvil, the so-called dynamic Taylor test, was solved. In comparison to the available experimental data on the residual deformed shape of the cylinder for various initial impact velocities as well as experimental data on the change in the shape of the cylinder during the impact at various time points, the disadvantages of the known models of dynamic plasticity are revealed. It can be seen that such approaches often cannot capture the “physics” of the process of dynamic plastic deformation of metals. A new approach is proposed, based on a relaxation model similar in form to the Maxwell model. The prospects of a new approach for describing the dynamics of plastic deformation of metals are shown.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
External organizations N2 All Read
External organizations N1 All
Internet Authorized users SPbPU Read Print Download
Internet Authorized users (not from SPbPU, N2) Read
Internet Authorized users (not from SPbPU, N1)
-> Internet Anonymous

Table of Contents

  • 1
  • 2
  • 3
  • 4
    • NOMENCLATURE
    • INTRODUCTION
      • 1.1 Background and Motivation
      • 1.2 Scope of Thesis
      • 1.3 Outline of the Thesis
    • CHAPTER 1. THEORETICAL BACKGROUND
      • 1.1 Stress Tensor
      • 1.2 Hydrostatic and deviatoric components
      • 1.3 Linear Elasticity
      • 1.4 Metal Plasticity
        • 1.4.1 Yield Surface
        • 1.4.2 Flow Rule
        • 1.4.3 Hardening Rule
      • 1.5 Specific Forms of the Equivalent Flow stress
        • 1.5.1 von Mises
        • 1.5.2 Johnson-Cook
        • 1.5.3 Steinberg-Guinan
        • 1.5.4 Zerilli-Armstrong
      • 1.6 Taylor Test
      • 1.7 Summary of Chapter 1
    • CHAPTER 2. METHODS
      • 2.1 von Mises Plasticity Model
      • 2.2 Johnson-Cook Plasticity Model
      • 2.3 Steinberg-Guinan Plasticity Model
      • 2.4 Zerilli-Armstrong Plasticity Model
      • 2.5 Comparison of results
      • 2.6 Summary of Material Models
    • CHAPTER 3. FINDINGS - NEW CONSTITUTIVE MODEL
      • 3.1 Hardening
      • 3.2 Hardening Rule
        • 3.2.1 Isotropic Hardening
      • 3.3 Viscoelastic response developed based on Maxwell rheological model
        • 3.3.1 Stress relaxation:
        • 3.3.2 Rheological models.
        • 3.3.3 Maxwell model
        • 3.3.4 Generalized Model
      • 3.4 Numerical formulation for linear response (Mathematical Description)
      • 3.5 Implementation of model through VUMAT
      • 3.6 Results
    • CHAPTER 4. RESULTS - MODEL COMPARISON AND PROFILE EVALUATION
    • CHAPTER 5. CONCLUSION AND RECOMMENDATION
    • REFERENCES

Usage statistics

stat Access count: 4
Last 30 days: 1
Detailed usage statistics