Details

Title: Алгоритм рекомендации изображений с использованием технологии распознавания образов: выпускная квалификационная работа магистра: направление 09.04.04 «Программная инженерия» ; образовательная программа 09.04.04_02 «Основы анализа и разработки приложений с большими объемами распределенных данных»
Creators: Кобышев Кирилл Сергеевич
Scientific adviser: Никифоров Игорь Валерьевич
Other creators: Локшина Екатерина Геннадиевна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2020
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Графов теория; рекомендация изображений; рекомендательные системы; word2vec; семантическое пространство; графовая база данных; распознавание образов
UDC: 519.17:004.4'414
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 09.04.04
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2020/vr/vr20-940
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Выпускная квалификационная работа магистра связана с исследованием в области алгоритмов рекомендательных систем. Исследованы существующие решения в области рекомендации изображений и выявлены их недостатки: необходимость в ручном заполнении метаданных изображений пользователями, необходимость в значительных ресурсах и данных для обучения, отсутствие учета истории действий пользователя и построения его профиля. Предложенное в исследовании решение имеет следующие отличительные особенности, которые позволяют избежать недостатков существующих решений: распознавание классов на изображениях, представление пользователей и изображений в семантическом пространстве и преобразование семантического пространства в графовую структуру. Предложенное решение было реализовано в виде прототипа рекомендательной системой, взаимодействующей со внешней системой по HTTP-протоколу. Реализованный прототип был протестирован на предмет точности и полноты с помощью вычисления метрик precision и recall, а также на предмет времени выполнения. Алгоритм показал удовлетворительные результаты. Запланированы доработки алгоритма, связанные с увеличением полноты результатов выполнения, а также покрытие рекомендательной системы автоматизированными тестами.

The master graduate qualification work is related to research in the field of recommender system algorithms. Existing solutions in the field of image recommendation have the following disadvantages: necessity of manual filling of metadata by users, necessity of significant resources and data for model training, lack of the user action history consideration and lack of building his profile. In this study, a new algorithm is proposed for image recommendation, which allows us to avoid the disadvantages of existing solutions. The proposed solution has the following distinctive features that help avoid the disadvantages of existing solutions: class recognition in images, representation of users and images in the semantic space, and transformation of the semantic space into a graph structure. The proposed solution was implemented as a prototype of recommender system that interacts with external system over HTTP protocol. The implemented prototype was tested for accuracy and completeness by calculation of precision and recall metrics and was tested for execution time. The algorithm showed satisfactory results. It is planned to increase the completeness of execution results and to cover the recommendation system with automated tests.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Usage statistics

stat Access count: 2
Last 30 days: 1
Detailed usage statistics