Details

Title Сжатие изображений с помощью генеративно-состязательной сети: выпускная квалификационная работа бакалавра: направление 09.03.04 «Программная инженерия» ; образовательная программа 09.03.04_01 «Технология разработки и сопровождения качественного программного продукта»
Creators Дудина Анна Николаевна
Scientific adviser Черноруцкий Игорь Георгиевич
Other creators Локшина Екатерина Геннадиевна
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2021
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects машинное обучение ; нейронные сети ; генеративно-состязательные сети ; сжатие изображений ; machine learning ; neural networks ; generative-adversarial networks ; image compression
Document type Bachelor graduation qualification work
File type PDF
Language Russian
Level of education Bachelor
Speciality code (FGOS) 09.03.04
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
Links Отзыв руководителя ; Отчет о проверке на объем и корректность внешних заимствований
DOI 10.18720/SPBPU/3/2021/vr/vr21-1202
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ru\spstu\vkr\12853
Record create date 7/16/2021

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Объектом исследования является разработанная на основе алгоритма генеративно-состязательной сети система сжатия изображений. Целью работы является изучение алгоритмов сжатия и разработка собственной системы сжатия изображений на основе алгоритма генеративно-состязательной сети. В ходе работы были рассмотрены различные алгоритмы построения нейронных сетей, изучен алгоритм построения генеративно-состязательной сети, разработана, обучена и протестирована генеративно-состязательная сеть для сжатия изображений, а также исследованы и подобраны наиболее оптимальные параметры модели для получения наилучшего результата, проанализированы результаты работы системы.

The object of the study is an image compression system devel-oped on the basis of the generative-adversarial network algorithm. The goal of the work is to study compression algorithms and develop a proprietary image compression system based on the generative-adversarial network algorithm. In the course of the work, various algorithms for constructing neural networks were considered, the algorithm for constructing a generative-adversarial network was studied, a generative-adversarial network for image compression was developed, trained and tested, and the most optimal model parameters were studied and selected to obtain the best result, and the results of the system were analyzed.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 8 
Last 30 days: 0

Detailed usage statistics