Table | Card | RUSMARC | |
Allowed Actions: –
Action 'Read' will be available if you login or access site from another network
Group: Anonymous Network: Internet |
Annotation
Рассмотрено применение технологий машинного обучения и искусственного интеллекта к процессу предварительного прогнозирования длительности проекта по разработке программного обеспечения с целью снижения основных проектных рисков. Определены факторы, которые наиболее сильно влияют на длительность работ в подобных проектах. Подобраны алгоритмы для ансамблевой модели, обеспечивающие высокое качество прогнозов. С помощью языка программирования Python проведено обучение модели и произведена перекрестная проверка результатов прогнозирования с целью повышения достоверности значений метрик оценки качества. Проведена комплексная оценка качества полученной модели с использованием полученных для нее значений общепринятых метрик для оценки моделей машинного обучения. Модель была признана адекватной и обеспечивающей высокую точность прогнозов. Осуществлено сравнение полученной модели с аналогичными с использованием известных значений метрик качества. Получены численные результаты, характеризующие полученный выигрыш в точности прогнозов полученной модели по сравнению с аналогами. Определены границы применимости полученной модели в организациях, занимающихся разработкой программного обеспечения. Даны рекомендации по внедрению и использованию предложенной модели в их промышленных процессах.
The application of machine learning and artificial intelligence technologies for the project duration predicting aimed to avoiding main software development project risks was considered. The factors that have huge influence on the duration of work in such projects have been identified. Algorithms for the ensemble model have been selected that provide high quality forecasts. Using the Python programming language, the model was trained, and the forecasting results were cross-validated in order to increase the reliability of the values of the quality assessment metrics. A comprehensive assessment of the quality of the model was performed using the values of conventional metrics for evaluating machine learning models obtained for it. The model was found to be adequate and fast in forecasting accuracy. A comparison to similar models using the known values of quality metrics was performed. Numerical characteristics were received that characterize the obtained gain in the accuracy of the forecasts of the model in comparison with analogs. The applicability of the model in organizations from software development domain has been determined. Recommendations are given for the implementation and use of the proposed model in their industrial processes.
Document access rights
Network | User group | Action | ||||
---|---|---|---|---|---|---|
ILC SPbPU Local Network | All |
![]() |
||||
External organizations N2 | All |
![]() |
||||
External organizations N1 | All | |||||
Internet | Authorized users SPbPU |
![]() |
||||
Internet | Authorized users (not from SPbPU, N2) |
![]() |
||||
Internet | Authorized users (not from SPbPU, N1) | |||||
![]() |
Internet | Anonymous |
Table of Contents
- ВВЕДЕНИЕ
- ГЛАВА 1. АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ В ОБЛАСТИ ОЦЕНКИ ДЛИТЕЛЬНОСТИ РАБОТ ПО РАЗРАБОТКЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
- 1.1. Современные тенденции в области применения методов оценки длительности работ по разработке программного обеспечения
- 1.2. Анализ ограничений методов оценки программного обеспечения
- 1.3. Обзор возможных источников данных о проектах для проведения оценки сроков работ
- 1.4. Анализ особенностей алгоритмов машинного обучения
- 1.5. Анализ публикаций в области оценки сроков работ с помощью методов машинного обучения
- 1.6. Выводы по главе
- ГЛАВА 2. МОДЕЛЬ ОЦЕНКИ ДЛИТЕЛЬНОСТИ ПРОЕКТА ПО РАЗРАБОТКЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
- 2.1. Подготовка и очистка данных для моделирования
- 2.2. Анализ выбранных данных
- 2.3. Выбор ансамбля алгоритмов для построения модели
- 2.4. Выбор способа валидации модели и метрик для оценки точности
- 2.5. Интерпретация результатов моделирования на исторических данных
- 2.6. Сравнение метрик качества с аналогичными известными моделями
- 2.7. Выводы по главе
- ГЛАВА 3. РЕКОМЕНДАЦИИ ПО ВНЕДРЕНИЮ МОДЕЛИ
- 3.1. Рекомендации по повышению достоверности результатов моделирования
- 3.2. Методические рекомендации по применению модели
- 3.3. Выводы по главе
- ЗАКЛЮЧЕНИЕ
- СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
- Приложение 1.
- Описание переменных для построения модели оценки длительности проектов по разработке программного обеспечения
Usage statistics
|
Access count: 38
Last 30 days: 1 Detailed usage statistics |