Details

Title: Разработка автоматизированого алгоритма оптимизации инвестиционного портфеля: выпускная квалификационная работа бакалавра: направление 38.03.01 «Экономика» ; образовательная программа 38.03.01_05 «Мировая экономика: финансовые рынки и институты»
Creators: Петров Даниил Никитич
Scientific adviser: Конников Евгений Александрович
Other creators: Малевская-Малевич Екатерина Данииловна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт промышленного менеджмента, экономики и торговли
Imprint: Санкт-Петербург, 2021
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: инвестиционный портфель; оптимизация; python 3; модель Марковица; фондовый рынок; акции; investment; portfolio; optimization; markowiz model; stock market; stocks
Document type: Bachelor graduation qualification work
File type: PDF
Language: Russian
Level of education: Bachelor
Speciality code (FGOS): 38.03.01
Speciality group (FGOS): 380000 - Экономика и управление
Links: Отзыв руководителя; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2021/vr/vr21-4484
Rights: Доступ по паролю из сети Интернет (чтение)
Record key: ru\spstu\vkr\12565

Allowed Actions:

Action 'Read' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Данная работа посвящена комплексной разработке алгоритма оптимизации инвестиционного портфеля, его автоматизации посредствам “Python 3”, апробации сформированного алгоритма применяемой к разным типам инвесторов и оценки эффективности. Задачи, которые решались в ходе исследования: 1. Исследование методологии оптимизации инвестиционного портфеля. 2. Анализ метрик, описывающих состояние инвестиционного портфеля. 3. Изучение метода и способа автоматизации инвестиционного портфеля посредствам “Python 3”. 4. Построение модели для прогнозирования бедующей цены закрытия актива с использованием технологий искусственного интеллекта. 5. Построение автоматизированного алгоритма оптимизации инвестиционного портфеля. 6. Предложение по использованию сформированного алгоритма в сфере финтех, финансовых рынков и портфельных инвестиций. Работа проведена на базе СПбПУ, где собиралась теоретическая информация и формировались экспертные заключения по эффективности использования разработанного алгоритма. Были изучены материалы, позволяющие автоматизировать алгоритм оптимизации инвестиционного портфеля, разработать нейросеть позволяющую спрогнозировать будущую цену закрытия актива. Были произведены практические работы по анализу эффективности модели прогнозирования и доходности алгоритма оптимизации инвестиционного портфеля. По результатам работы была создана и апробирована нейросеть для прогнозирования бедующей цены закрытия, был создан и апробирован автоматизированный алгоритм оптимизации инвестиционного портфеля. Кроме того, были проведены действия по внедрению разработанной технологии в существующую компанию в сфере трейдинга и финтеха.

This work is devoted to the complex development of algorithm of optimizing an investment portfolio, its optimization with the use of «Python 3», approbation of formed technology, applied to the various types of investors and evaluating its effectiveness. The following goals were set: 1. Research of the methodology of optimizing an investment portfolio. 2. Analysis of metrics, which are used to describe the current condition of the investment portfolio. 3. Research of methodology to automize the algorithm of optimization with the use of «Python 3». 4. Building the model to predict future closing price of the assets with the use of artificial intelligent. 5. Developing automated algorithm of optimizing an investment portfolio. 6. Proposition of using developed technology in the area of fintech, stocks market and investment portfolio. The work was carried out on the basis of SPBPU, where theoretical information was collected and processed. The expert opinions were formed on effective use of the formed algorithm. Were learned materials about automating several financial analysis tools, has been developed neuro-network for predicting closing stock price. Accurate of the prediction model has been tested and profit of the algorithm has been investigated. Based on the results of the work, a neural network was created and tested to predict the downward closing price, an automated algorithm for optimizing the investment portfolio was created and tested. In addition, actions were taken to introduce the developed technology into an existing company in the field of trading and fintech.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read
External organizations N2 All Read
External organizations N1 All
Internet Authorized users SPbPU Read
Internet Authorized users (not from SPbPU, N2) Read
Internet Authorized users (not from SPbPU, N1)
-> Internet Anonymous

Table of Contents

  • ВВЕДЕНИЕ
  • 1. ПРИНЦИПЫ РАБОТЫ ТОРГОВЫХ АЛГОРИТМОВ И ТЕОРИТИЧЕСКИЕ АСПЕКТЫ ОПТИМИЗАЦИЯ ИНВЕСТИЦИОННОГО ПОРТФЕЛЯ
    • 1.1 Классификация торговых советников и их принцип работы
    • 1.2 Понятие инвестиционного портфеля и его оптимизация
    • 1.3 Описание языке программирования «Python» и принцип оптимизации инвестиционного портфеля при помощи «Python»
  • 2. РАЗРАБОТКА МОДЕЛИ НЕЙРОСЕТИ ДЛЯ ПРОГНОЗИРОВАНИЯ БУДУЮЩЕЙ ЦЕНЫ ЗАКРТЫИЯ АКТИВА И АВТОМАТИЗАЦИЯ АЛГОРИТМА ОПТИМИЗАЦИИ ИНВЕСТИЦИОННОГО ПОРТФЕЛЯ
    • 2.1 Формирование тестового портфеля для прогнозирования доходности и оптимизации
    • 2.2 Построение модели нейросети для прогнозирования будущих цены закрытия
    • 2.3 Тестирование точности результатов выдаваемых нейросетью и оптимизация инвестиционного портфеля
  • 3. ВЫЯВЛЕНИЕ НЕДОСТАТКОВ И ОПТИМИЗАЦИЯ НАПИСАННОГО АЛГОРИТМА, ПРИМЕНЕНИЕ ДАННОГО СЕРВИСА В РЕАЛЬНОЙ СИТУАЦИИ
    • 3.1 Выявление недостатков и оптимизация модели
    • 3.2 Внедрение алгоритма в рабочие процессы компании
    • 3.3 Перспективы развития разработанной технологии
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ЛИТЕРАТУРЫ

Usage statistics

stat Access count: 15
Last 30 days: 0
Detailed usage statistics