Details
Title | Прогноз проницаемости трехмерной модели керна: выпускная квалификационная работа бакалавра: направление 01.03.03 «Механика и математическое моделирование» ; образовательная программа 01.03.03_01 «Механика и математическое моделирование сред с микроструктурой» |
---|---|
Creators | Бакута Артём Денисович |
Scientific adviser | Кузькин Виталий Андреевич |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Физико-механический институт |
Imprint | Санкт-Петербург, 2022 |
Collection | Выпускные квалификационные работы ; Общая коллекция |
Subjects | проницаемость ; керн ; машинное обучение ; нейронная сеть ; пористость ; permeability ; core ; machine learning ; neural network ; porosity ; сatboost ; gradient boosting ; digital rock |
Document type | Bachelor graduation qualification work |
File type | |
Language | Russian |
Level of education | Bachelor |
Speciality code (FGOS) | 01.03.03 |
Speciality group (FGOS) | 010000 - Математика и механика |
DOI | 10.18720/SPBPU/3/2022/vr/vr22-1232 |
Rights | Доступ по паролю из сети Интернет (чтение) |
Record key | ru\spstu\vkr\16665 |
Record create date | 7/27/2022 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
Данная работа направленна на проверку применимости методов машинного обучения для прогнозирования проницаемости оцифрованных кернов. В работе применены метод градиентного бустинга и глубокое обучение. Исследование проводилось на данных из открытых источников. Проведено сравнение качества прогноза различных параметров и методов. Полученные результаты демонстрируют применимость машинного обучения для прогнозирования проницаемости на основе изображений и открывают новую область цифровых исследований горных пород.
This work is aimed at testing the applicability of machine learning methods for predicting the permeability of digitized cores. The gradient boosting method and deep learning are used in the work. The study was conducted on data from open sources. The quality of the forecast of various parameters and methods is compared. The obtained results demonstrate the applicability of machine learning to predict permeability based on images and open a new field of digital rock research.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
Access count: 11
Last 30 days: 0