Детальная информация

Название: Разработка алгоритма краткосрочного прогноза погоды на базе нейронной сети: выпускная квалификационная работа бакалавра: направление 02.03.02 «Фундаментальная информатика и информационные технологии» ; образовательная программа 02.03.02_02 «Информатика и компьютерные науки»
Авторы: Кузнецова Юлия Алексеевна
Научный руководитель: Тышкевич Антон Игоревич
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Выходные сведения: Санкт-Петербург, 2022
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: искусственная нейронная сеть; рекуррентная нейронная сеть; нейронная сеть с долгой краткосрочной памятью; управляемый рекуррентный нейрон; прогнозирование метеорологических параметров; интерполяция; artificial neural network; recurrent neural network; neural network with long short-term memory; gated recurrent unit; prediction of meteorological parameters; interpolation
Тип документа: Выпускная квалификационная работа бакалавра
Тип файла: PDF
Язык: Русский
Уровень высшего образования: Бакалавриат
Код специальности ФГОС: 02.03.02
Группа специальностей ФГОС: 020000 - Компьютерные и информационные науки
DOI: 10.18720/SPBPU/3/2022/vr/vr22-3039
Права доступа: Доступ по паролю из сети Интернет (чтение, печать)
Дополнительно: Новинка
Ключ записи: ru\spstu\vkr\19750

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Актуальность данной работы заключается в необходимости разработки моделей прогнозирования на базе нейронных сетей для портативных метеостанций, ввиду невозможности использовать для локальных исследований ресурсозатратных математических моделей. Объектом исследования являются методы на основе нейронных сетей для прогноза метеорологических параметров. Целью данной работы является разработка эффективной модели нейронной сети с долгой краткосрочной памятью для прогнозирования метеорологических элементов погоды. Для достижения поставленной в работе цели был изучен теоретический материал о рекуррентных нейронных сетях, разработаны два подхода к созданию прогноза: с помощью интерполяции полученных прогнозируемых данных и создание обучающего набора с помощью интерполяции. В соответствии с поставленной задачей была реализована нейронная сеть с долгой краткосрочной памятью с помощью фреймворка TensorFlow и библиотек Pandas, Keras, SKlearn на языке программирования Python, а также проведен сравнительный анализ методов прогнозирования метеорологических данных. Прогноз с помощью данной модели достигает точности до 90% для ряда метеорологических параметров. Нейронная сеть показала, что умеет искать периодичность в данных и при этом умеет предсказывать сезонный тренд.

The relevance of this work lies in the need to develop forecasting models based on neural networks for portable meteorological stations, due to the inability to use resource-intensive mathematical models for local research. The object of the study is methods based on neural networks for forecasting meteorological parameters. The purpose of this work is to develop an effective model of a neural network with a long short-term memory for forecasting meteorological elements of the weather. In order to achieve the goal set in the work, theoretical material on recurrent neural networks was studied, two approaches to creating a forecast were developed: using interpolation of the predicted data obtained and creating a training set using interpolation.In accordance with the task, a neural network with a long short-term memory was implemented using the TensorFlow framework and the Pandas, Keras, SKlearn bibliotech in the Python programming language, and a comparative analysis of meteorological data forecasting methods was carried out. The forecast using this model reaches an accuracy of up to 90% for a number of meteorological parameters. The neural network has shown that it is able to search for periodicity in data and at the same time is able to predict the seasonal trend.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать
Внешние организации №2 Все Прочитать
Внешние организации №1 Все
Интернет Авторизованные пользователи СПбПУ Прочитать Печать
Интернет Авторизованные пользователи (не СПбПУ, №2) Прочитать
Интернет Авторизованные пользователи (не СПбПУ, №1)
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика