Details

Title: Разработка алгоритма краткосрочного прогноза погоды на базе нейронной сети: выпускная квалификационная работа бакалавра: направление 02.03.02 «Фундаментальная информатика и информационные технологии» ; образовательная программа 02.03.02_02 «Информатика и компьютерные науки»
Creators: Кузнецова Юлия Алексеевна
Scientific adviser: Тышкевич Антон Игоревич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2022
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: искусственная нейронная сеть; рекуррентная нейронная сеть; нейронная сеть с долгой краткосрочной памятью; управляемый рекуррентный нейрон; прогнозирование метеорологических параметров; интерполяция; artificial neural network; recurrent neural network; neural network with long short-term memory; gated recurrent unit; prediction of meteorological parameters; interpolation
Document type: Bachelor graduation qualification work
File type: PDF
Language: Russian
Level of education: Bachelor
Speciality code (FGOS): 02.03.02
Speciality group (FGOS): 020000 - Компьютерные и информационные науки
DOI: 10.18720/SPBPU/3/2022/vr/vr22-3039
Rights: Доступ по паролю из сети Интернет (чтение, печать)
Additionally: New arrival
Record key: ru\spstu\vkr\19750

Allowed Actions:

Action 'Read' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Актуальность данной работы заключается в необходимости разработки моделей прогнозирования на базе нейронных сетей для портативных метеостанций, ввиду невозможности использовать для локальных исследований ресурсозатратных математических моделей. Объектом исследования являются методы на основе нейронных сетей для прогноза метеорологических параметров. Целью данной работы является разработка эффективной модели нейронной сети с долгой краткосрочной памятью для прогнозирования метеорологических элементов погоды. Для достижения поставленной в работе цели был изучен теоретический материал о рекуррентных нейронных сетях, разработаны два подхода к созданию прогноза: с помощью интерполяции полученных прогнозируемых данных и создание обучающего набора с помощью интерполяции. В соответствии с поставленной задачей была реализована нейронная сеть с долгой краткосрочной памятью с помощью фреймворка TensorFlow и библиотек Pandas, Keras, SKlearn на языке программирования Python, а также проведен сравнительный анализ методов прогнозирования метеорологических данных. Прогноз с помощью данной модели достигает точности до 90% для ряда метеорологических параметров. Нейронная сеть показала, что умеет искать периодичность в данных и при этом умеет предсказывать сезонный тренд.

The relevance of this work lies in the need to develop forecasting models based on neural networks for portable meteorological stations, due to the inability to use resource-intensive mathematical models for local research. The object of the study is methods based on neural networks for forecasting meteorological parameters. The purpose of this work is to develop an effective model of a neural network with a long short-term memory for forecasting meteorological elements of the weather. In order to achieve the goal set in the work, theoretical material on recurrent neural networks was studied, two approaches to creating a forecast were developed: using interpolation of the predicted data obtained and creating a training set using interpolation.In accordance with the task, a neural network with a long short-term memory was implemented using the TensorFlow framework and the Pandas, Keras, SKlearn bibliotech in the Python programming language, and a comparative analysis of meteorological data forecasting methods was carried out. The forecast using this model reaches an accuracy of up to 90% for a number of meteorological parameters. The neural network has shown that it is able to search for periodicity in data and at the same time is able to predict the seasonal trend.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print
External organizations N2 All Read
External organizations N1 All
Internet Authorized users SPbPU Read Print
Internet Authorized users (not from SPbPU, N2) Read
Internet Authorized users (not from SPbPU, N1)
-> Internet Anonymous

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics