Details

Title: Численное моделирование вихревой структуры течения, формирующейся при сверхзвуковом обтекании усложненной по геометрии области сопряжения затупленного тела и пластины: выпускная квалификационная работа магистра: направление 03.04.01 «Прикладные математика и физика» ; образовательная программа 03.04.01_02 «Модели и высокопроизводительные вычисления в физической гидрогазодинамике»
Creators: Шишкина Ирина Александровна
Scientific adviser: Колесник Елизавета Владимировна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Физико-механический институт
Imprint: Санкт-Петербург, 2022
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Математическое моделирование; Теплообмен; высокоскоростные течения; вязко-невязкое взаимодействие; подковообразные вихри; supersunic flows; shock-boundary layer interaction; horseshoe vortices
UDC: 519.876.5; 536.24
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Level of education: Master
Speciality code (FGOS): 03.04.01
Speciality group (FGOS): 030000 - Физика и астрономия
DOI: 10.18720/SPBPU/3/2023/vr/vr23-532
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key: ru\spstu\vkr\20830

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Тема выпускной квалификационной работы: «Численное моделирование вихревой структуры течения, формирующегося при сверхзвуковом обтекании усложненной по геометрии области сопряжения затупленного тела и пластины». Работа посвящена численному исследованию особенностей структуры течения и картины локального теплообмена при сверхзвуковом обтекании области сопряжения затупленного тела и пластины, а также оценке эффективности снижения тепловых нагрузок на обтекаемую поверхность за счет усложнения геометрии рассматриваемой конфигурации. Задачи исследования: Обзор работ, посвященных задаче обтекания сверхзвуковым потоком области сочленения затупленного тела и пластины, в которых изучается влияние геометрических параметров на структуру течения и теплообмен; Проведение расчетов для базовой геометрии (сопряжение тела и пластины под прямым углом); методическое исследование влияния размера расчетное области и положение границ на получаемое решение; Проведение расчетов для модифицированной геометрии, полученной с помощью скругления области сопряжения затупленного тела и пластины; Проведение расчетов для модифицированной геометрии, полученной с помощью задания угла скоса затупленного тела; Анализ структуры течения и картины локального теплообмена для рассмотренных конфигураций. Расчеты проводились с помощью конечно-объемного «неструктурированного» кода SINF/Flag-S, разрабатываемого в ФизМех СПбПУ. В результате рассмотрения двух вариантов усложненной по геометрии области сопряжения затупленного тела и пластины (с использованием различного радиуса скругления и углов скоса) было установлено, что при наличии скругления меняется вихревая структура в передней отрывной области, с ростом радиуса скругления уменьшается число вихрей и их размеры. При увеличении угла скоса количество вихрей остается прежним, однако их размеры существенно сокращаются. Проведено сопоставление картин локального теплообмена в области сопряжения тела и пластины. Показано, что увеличение радиуса скругления позволяет сократить максимальные значения числа Стэнтона на поверхности тела, однако не приводит к значительному снижению тепловых нагрузок на поверхности обтекаемой пластины. Увеличение угла скоса, напротив, приводит к значительному уменьшению пиковых значений числа Стэнтона на поверхности пластины (примерно в 6 раз при угле скоса 15 градусов), при этом картина распределения числа Стэнтона на поверхности тела практически не меняется.

The subject of the graduate qualification work is “Numerical simulation of the vortex flow structure generated in supersonic flow past the fin–body interaction region with modified geometry”. The given work is devoted to the numerical study of the flow structure features and the picture of local heat transfer in supersonic flow past the fin–body interaction region and evaluation of the effectiveness of reducing thermal loads on the streamlined surface due to the complexity of the geometry of the considered configuration.Research objectives: Review of the articles devoted to the problem of supersonic flow past the fin–body interaction region, in which the influence of geometric parameters on the flow structure and heat transfer is investigated. Carrying out calculations for the basic geometry (in the fin–body interaction region with a right angle); methodical study of the influence of the computational domain size and the position of the boundaries on solution; Carrying out calculations for the modified geometry obtained using fillet in the fin–body interaction region; Carrying out calculations for the modified geometry obtained using sweep angle of the body; Analysis of the flow structure and the picture of the local heat transfer for considered configurations. The calculations were performed using of the finite-volume “unstructured” SINF/Flag-S code developed at PhysMech SPbPU.As a result of considering two variants of the fin–body interaction region with modified geometry (using fillet and sweep angles), it was found that the vortex structure in the front separation region changes in the presence of fillet, the number of vorticities and their sizes decrease with an increase of fillet radius. The number of vorticities remains the same but their sizes decrease with an increase of the sweep angle. The picture of the local heat transfer in the fin–body interaction region is compared. It was shown that an increase of fillet radius allows to reduce the maximum value of the Stanton number on the body surface, but does not lead to a significant decrease in thermal loads on the surface of the streamlined plate. On the contrary, an increase of sweep angle leads to a significant decrease in the pick values of the Stanton number on the plate surface (about 6 times for a sweep angle of 15 degrees), while the picture of the Stanton number distribution on the body surface remains almost the same.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users SPbPU Read Print Download
-> Internet Anonymous

Table of Contents

  • Введение
  • 1 Обзор литературы
  • 2 Математическая модель и численный метод
    • 2.1 Уравнения динамики сжимаемого газа
    • 2.2 Общие положения МКО
    • 2.3 Вычислительные аспекты
  • 3 Методические и тестовые расчеты
    • 3.1 Сверхзвуковое стационарное ламинарное обтекание области сопряжения затупленного ребра и пластины. Детали постановки задачи и математической модели
    • 3.2 Сверхзвуковое стационарное ламинарное обтекание области сопряжения затупленного ребра и пластины. Анализ течения
    • 3.3 Результаты расчетов для разных размеров расчетной области
  • 4 Сверхзвуковое обтекание усложненной по геометрии области сопряжения затупленного тела и пластины
    • 4.1 Сверхзвуковое обтекание области сопряжения затупленного тела и пластины, имеющей скругление
      • 4.1.1 Детали постановки задачи и математической модели
      • 4.1.2 Анализ результатов расчёта
    • 4.2 Сверхзвуковое обтекание области сопряжения скошенного затупленного тела и пластины
      • 4.2.1 Детали постановки задачи и математической модели
      • 4.2.2 Анализ результатов расчета
  • Заключение
  • Список использованных источников

Usage statistics

stat Access count: 3
Last 30 days: 0
Detailed usage statistics