Детальная информация

Название: Термодинамическое и экономическое моделирование и оптимизация отбора пара из второго контура когенерационного ядерного энергоблока: выпускная квалификационная работа магистра: направление 13.04.01 «Теплоэнергетика и теплотехника» ; образовательная программа 13.04.01_03 «Тепловые электрические станции (международная образовательная программа) / Power Plant Engineering (International Educational Program)»
Авторы: Хакан Мухаммед Ясин
Научный руководитель: Аникина Ирина Дмитриевна
Организация: Санкт-Петербургский политехнический университет Петра Великого. Институт энергетики
Выходные сведения: Санкт-Петербург, 2023
Коллекция: Выпускные квалификационные работы; Общая коллекция
Тематика: оптимизация отбора пара; вторичный контур легководного ядерного реактора ввэр-1000; вторичный цикл атомной электростанции; когенерационные приложения; steam extraction optimization; secondary circuit of VVER-1000 light water nuclear reactor; secondary cycle of nuclear power plant; cogeneration applications
Тип документа: Выпускная квалификационная работа магистра
Тип файла: PDF
Язык: Русский
Уровень высшего образования: Магистратура
Код специальности ФГОС: 13.04.01
Группа специальностей ФГОС: 130000 - Электро- и теплоэнергетика
DOI: 10.18720/SPBPU/3/2023/vr/vr24-595
Права доступа: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Дополнительно: Новинка
Ключ записи: ru\spstu\vkr\27469

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

В данной диссертации представлен термодинамический и экономический анализ отбора пара из вторичного контура легководного ядерного реактора для когенерации. Основной целью исследования является оптимизация работы системы отбора пара с точки зрения энергоэффективности и экономической эффективности. Разработана математическая модель системы отбора пара, которая используется для моделирования работы при различных условиях эксплуатации. Затем модель используется для оптимизации параметров системы и определения оптимальных условий эксплуатации. Результаты оптимизационного анализа позволили получить коэффициент потерь мощности всего 0,25 ядерной опреснительной системы путем извлечения горячего потока из турбины низкого давления и турбины высокого давления с требуемой мощностью 44,1 МВт, соответственно 50% от турбины низкого давления и 50% от турбины высокого давления. Результаты исследования показывают, что система отбора пара может значительно улучшить общую энергоэффективность и экономические показатели системы ядерной когенерации. Результаты данного исследования имеют существенное значение для проектирования и эксплуатации систем ядерной когенерации и могут быть использованы для разработки более эффективных и экономичных систем.

This dissertation presents a thermodynamic and economic analysis of the steam extraction from the secondary loop of a light water nuclear reactor for cogeneration applications. The main objective of the study is to optimize the performance of the steam extraction system in terms of energy efficiency and cost effectiveness. A mathematical model of the steam extraction system is developed and used to simulate the performance under different operating conditions. The model is then used to optimize the system parameters and identify the optimal operating conditions. The results of optimization analysis have led to get power loss coefficient just 0.25 nuclear desalination system by extracting the hot stream from the low-pressure turbine and high-pressure turbine with the required power of 44.1 MW, respectively 50% from low-pressure and 50% from high-pressure turbine. The results of the study show that the steam extraction system can significantly improve the overall energy efficiency and economic performance of the nuclear cogeneration system. The findings of this study have significant implications for the design and operation of nuclear cogeneration systems and can be used to guide the development of more efficient and cost-effective systems.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
Интернет Авторизованные пользователи СПбПУ Прочитать Печать Загрузить
-> Интернет Анонимные пользователи

Оглавление

  • Introduction
  • 1 Nuclear power plant secondary loop modeling
    • 1.1 Nuclear power plants and their types
    • 1.2 Russian PWR Designs- VVER(Water-Water Energetic Reactor)
    • 1.3 Key differences between PWR and a thermal power plant’s secondary loop
    • 1.4 Available methods and programs for modeling secondary loop of the NPPs
  • 2 Thermodynamic modeling of the NPP secondary loop
    • 2.1 First-Law Analysis for a Control Volume
      • 2.1.1 CONSERVATION OF MASS AND THE CONTROL VOLUME
      • 2.1.2 THE FIRST LAW OF THERMODYNAMICS FOR A CONTROL VOLUME
    • 2.2 THE SECOND LAW OF THERMODYNAMICS FOR A CONTROL VOLUME
    • 2.3 Equipment explanation along with the mass and energy balance equations
      • 2.3.1 Turbine
      • 2.3.2 Pump
      • 2.3.3 Condenser
      • 2.3.4 Steam Generator
      • 2.3.5 Reheater
      • 2.3.6 Moisture Separator
      • 2.3.7 Open Feedwater Heater
      • 2.3.8 Close Feedwater Heater
      • 2.3.9 Expansion Valve
      • 2.3.10 Mixing Chamber
    • 2.4 Adequacy of Method
      • 2.4.1 DE-TOP
      • 2.4.2 Initial Data
      • 2.4.3 Results
    • 2.5 Use of extracted steam for cogeneration application, the case of seawater desalination
    • 2.6 Scheme of VVER-1000 secondary loop
    • 2.7 The developed computer program based on presented method
    • 2.8 Integration of the second cycle of NPP with the desalination module (MED system)
      • 2.8.1 Single extraction line performance margin
      • 2.8.2 Double extraction line performance margin with percentage
      • 2.8.3 Triple extraction line performance margin with percentage
  • 3 Economic evaluation of the NPP with and without steam extraction.
    • 3.1 The used method for economic analysis
  • 4 Results and discussion
    • 4.1 Single Extraction Line
      • 4.1.1 Power Loss Coefficient
      • 4.1.2 Thermal Efficiency
      • 4.1.3 Thermal Utilization Factor
    • 4.2 Double Extraction Line
      • 4.2.1 Power Loss Coefficient
      • 4.2.2 Thermal Efficiency
      • 4.2.3 Thermal Utilization Factor
    • 4.3 Triple Extraction Line
      • 4.3.1 Power Loss Coefficient
      • 4.3.2 Thermal Efficiency
      • 4.3.3 Thermal Utilization Factor
  • 5 Conclusion
  • References

Статистика использования

stat Количество обращений: 2
За последние 30 дней: 0
Подробная статистика