Details

Title: Термодинамическое и экономическое моделирование и оптимизация отбора пара из второго контура когенерационного ядерного энергоблока: выпускная квалификационная работа магистра: направление 13.04.01 «Теплоэнергетика и теплотехника» ; образовательная программа 13.04.01_03 «Тепловые электрические станции (международная образовательная программа) / Power Plant Engineering (International Educational Program)»
Creators: Хакан Мухаммед Ясин
Scientific adviser: Аникина Ирина Дмитриевна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт энергетики
Imprint: Санкт-Петербург, 2023
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: оптимизация отбора пара; вторичный контур легководного ядерного реактора ввэр-1000; вторичный цикл атомной электростанции; когенерационные приложения; steam extraction optimization; secondary circuit of VVER-1000 light water nuclear reactor; secondary cycle of nuclear power plant; cogeneration applications
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Level of education: Master
Speciality code (FGOS): 13.04.01
Speciality group (FGOS): 130000 - Электро- и теплоэнергетика
DOI: 10.18720/SPBPU/3/2023/vr/vr24-595
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Additionally: New arrival
Record key: ru\spstu\vkr\27469

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

В данной диссертации представлен термодинамический и экономический анализ отбора пара из вторичного контура легководного ядерного реактора для когенерации. Основной целью исследования является оптимизация работы системы отбора пара с точки зрения энергоэффективности и экономической эффективности. Разработана математическая модель системы отбора пара, которая используется для моделирования работы при различных условиях эксплуатации. Затем модель используется для оптимизации параметров системы и определения оптимальных условий эксплуатации. Результаты оптимизационного анализа позволили получить коэффициент потерь мощности всего 0,25 ядерной опреснительной системы путем извлечения горячего потока из турбины низкого давления и турбины высокого давления с требуемой мощностью 44,1 МВт, соответственно 50% от турбины низкого давления и 50% от турбины высокого давления. Результаты исследования показывают, что система отбора пара может значительно улучшить общую энергоэффективность и экономические показатели системы ядерной когенерации. Результаты данного исследования имеют существенное значение для проектирования и эксплуатации систем ядерной когенерации и могут быть использованы для разработки более эффективных и экономичных систем.

This dissertation presents a thermodynamic and economic analysis of the steam extraction from the secondary loop of a light water nuclear reactor for cogeneration applications. The main objective of the study is to optimize the performance of the steam extraction system in terms of energy efficiency and cost effectiveness. A mathematical model of the steam extraction system is developed and used to simulate the performance under different operating conditions. The model is then used to optimize the system parameters and identify the optimal operating conditions. The results of optimization analysis have led to get power loss coefficient just 0.25 nuclear desalination system by extracting the hot stream from the low-pressure turbine and high-pressure turbine with the required power of 44.1 MW, respectively 50% from low-pressure and 50% from high-pressure turbine. The results of the study show that the steam extraction system can significantly improve the overall energy efficiency and economic performance of the nuclear cogeneration system. The findings of this study have significant implications for the design and operation of nuclear cogeneration systems and can be used to guide the development of more efficient and cost-effective systems.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users SPbPU Read Print Download
-> Internet Anonymous

Table of Contents

  • Introduction
  • 1 Nuclear power plant secondary loop modeling
    • 1.1 Nuclear power plants and their types
    • 1.2 Russian PWR Designs- VVER(Water-Water Energetic Reactor)
    • 1.3 Key differences between PWR and a thermal power plant’s secondary loop
    • 1.4 Available methods and programs for modeling secondary loop of the NPPs
  • 2 Thermodynamic modeling of the NPP secondary loop
    • 2.1 First-Law Analysis for a Control Volume
      • 2.1.1 CONSERVATION OF MASS AND THE CONTROL VOLUME
      • 2.1.2 THE FIRST LAW OF THERMODYNAMICS FOR A CONTROL VOLUME
    • 2.2 THE SECOND LAW OF THERMODYNAMICS FOR A CONTROL VOLUME
    • 2.3 Equipment explanation along with the mass and energy balance equations
      • 2.3.1 Turbine
      • 2.3.2 Pump
      • 2.3.3 Condenser
      • 2.3.4 Steam Generator
      • 2.3.5 Reheater
      • 2.3.6 Moisture Separator
      • 2.3.7 Open Feedwater Heater
      • 2.3.8 Close Feedwater Heater
      • 2.3.9 Expansion Valve
      • 2.3.10 Mixing Chamber
    • 2.4 Adequacy of Method
      • 2.4.1 DE-TOP
      • 2.4.2 Initial Data
      • 2.4.3 Results
    • 2.5 Use of extracted steam for cogeneration application, the case of seawater desalination
    • 2.6 Scheme of VVER-1000 secondary loop
    • 2.7 The developed computer program based on presented method
    • 2.8 Integration of the second cycle of NPP with the desalination module (MED system)
      • 2.8.1 Single extraction line performance margin
      • 2.8.2 Double extraction line performance margin with percentage
      • 2.8.3 Triple extraction line performance margin with percentage
  • 3 Economic evaluation of the NPP with and without steam extraction.
    • 3.1 The used method for economic analysis
  • 4 Results and discussion
    • 4.1 Single Extraction Line
      • 4.1.1 Power Loss Coefficient
      • 4.1.2 Thermal Efficiency
      • 4.1.3 Thermal Utilization Factor
    • 4.2 Double Extraction Line
      • 4.2.1 Power Loss Coefficient
      • 4.2.2 Thermal Efficiency
      • 4.2.3 Thermal Utilization Factor
    • 4.3 Triple Extraction Line
      • 4.3.1 Power Loss Coefficient
      • 4.3.2 Thermal Efficiency
      • 4.3.3 Thermal Utilization Factor
  • 5 Conclusion
  • References

Usage statistics

stat Access count: 2
Last 30 days: 0
Detailed usage statistics