Details
Title | Early diagnosis of breast cancer based on deep neural networks Ранняя диагностика рака молочной железы на основе глубокого обучения: выпускная квалификационная работа магистра: направление 09.04.01 «Информатика и вычислительная техника» ; образовательная программа 09.04.01_17 «Интеллектуальные системы (международная образовательная программа) / Intelligent Systems (International Educational Program)» |
---|---|
Creators | Тадай Морочо Эрика Элисабет |
Scientific adviser | Кожубаев Юрий Нургалиевич |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и кибербезопасности |
Imprint | Санкт-Петербург, 2024 |
Collection | Выпускные квалификационные работы; Общая коллекция |
Subjects | computer vision; medical imaging; deep learning; convolutional neural networks; binary classification; residual neural networks (ResNet); convolutional block attention (CBAM); transfer learning; fine-tuning; breast cancer; malignant; benign; invasive ductal carcinoma (IDC); histopathology image (HP) |
Document type | Master graduation qualification work |
File type | |
Language | Russian |
Level of education | Master |
Speciality code (FGOS) | 09.04.01 |
Speciality group (FGOS) | 090000 - Информатика и вычислительная техника |
DOI | 10.18720/SPBPU/3/2024/vr/vr24-5866 |
Rights | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Additionally | New arrival |
Record key | ru\spstu\vkr\33949 |
Record create date | 11/29/2024 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
Breast cancer is the leading cause of death among women, with the American Cancer Society reporting over 40,000 deaths each year. Given the critical importance of early detection in improving outcomes, advancements in diagnostic technologies are crucial. This thesis presents the development of the ReAttentionNet model, an enhancement of the ResNet50 architecture integrated with a Convolutional Block Attention Module (CBAM). This model is specifically designed for classifying histopathological images as either malignant or benign at a 40x magnification level. Demonstrating outstanding performance metrics—99.25% accuracy, 100% precision, 98.92% recall, and a 99.56% F1-score—the ReAttentionNet model significantly outperforms existing methods, highlighting its potential as a powerful tool for early breast cancer detection. Further validation of our model on the IDC dataset, utilizing the foundational BreakHis dataset, confirms its adaptability and potential for real-world clinical settings, setting the stage for transformative advances in early detection practices for breast cancer.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
Access count: 0
Last 30 days: 0