Details

Title Early diagnosis of breast cancer based on deep neural networks Ранняя диагностика рака молочной железы на основе глубокого обучения: выпускная квалификационная работа магистра: направление 09.04.01 «Информатика и вычислительная техника» ; образовательная программа 09.04.01_17 «Интеллектуальные системы (международная образовательная программа) / Intelligent Systems (International Educational Program)»
Creators Тадай Морочо Эрика Элисабет
Scientific adviser Кожубаев Юрий Нургалиевич
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и кибербезопасности
Imprint Санкт-Петербург, 2024
Collection Выпускные квалификационные работы; Общая коллекция
Subjects computer vision; medical imaging; deep learning; convolutional neural networks; binary classification; residual neural networks (ResNet); convolutional block attention (CBAM); transfer learning; fine-tuning; breast cancer; malignant; benign; invasive ductal carcinoma (IDC); histopathology image (HP)
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.01
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/3/2024/vr/vr24-5866
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Additionally New arrival
Record key ru\spstu\vkr\33949
Record create date 11/29/2024

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Breast cancer is the leading cause of death among women, with the American Cancer Society reporting over 40,000 deaths each year. Given the critical importance of early detection in improving outcomes, advancements in diagnostic technologies are crucial. This thesis presents the development of the ReAttentionNet model, an enhancement of the ResNet50 architecture integrated with a Convolutional Block Attention Module (CBAM). This model is specifically designed for classifying histopathological images as either malignant or benign at a 40x magnification level. Demonstrating outstanding performance metrics—99.25% accuracy, 100% precision, 98.92% recall, and a 99.56% F1-score—the ReAttentionNet model significantly outperforms existing methods, highlighting its potential as a powerful tool for early breast cancer detection. Further validation of our model on the IDC dataset, utilizing the foundational BreakHis dataset, confirms its adaptability and potential for real-world clinical settings, setting the stage for transformative advances in early detection practices for breast cancer.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 0 
Last 30 days: 0

Detailed usage statistics