Details
Title | Machine learning methods of multi-objective optimization of manufacturing processes Методы машинного обучения в многокритериальной оптимизации производственных процессов: выпускная квалификационная работа магистра: направление 09.04.01 «Информатика и вычислительная техника» ; образовательная программа 09.04.01_17 «Интеллектуальные системы (международная образовательная программа) / Intelligent Systems (International Educational Program)» |
---|---|
Creators | Шэнь Хуэй |
Scientific adviser | Шкодырев Вячеслав Петрович |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и кибербезопасности |
Imprint | Санкт-Петербург, 2024 |
Collection | Выпускные квалификационные работы; Общая коллекция |
Subjects | steam power boiler; generic algorithm; neural network; steam power system; multi-optimization |
Document type | Master graduation qualification work |
File type | |
Language | Russian |
Level of education | Master |
Speciality code (FGOS) | 09.04.01 |
Speciality group (FGOS) | 090000 - Информатика и вычислительная техника |
DOI | 10.18720/SPBPU/3/2024/vr/vr24-5874 |
Rights | Доступ по паролю из сети Интернет (чтение) |
Additionally | New arrival |
Record key | ru\spstu\vkr\33950 |
Record create date | 11/29/2024 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
In multi-objective optimization problems, different objectives often conflict with each other, that is, improving one objective may lead to a decrease in the performance of other objectives. Therefore, it is impossible to achieve the ideal optimal state of all goals at the same time, but coordination and compromise between various goals are required. In practical applications, multi-objective optimization algorithms need to take into account the weight relationships between different objectives and find a set of solutions that meet the requirements through iteration and search. Boiler is the power and material source of steam power system. Its performance really affect the work of System Power System. So it’s a vital problem to control the boiler produce as much as steam and energy taking from it and keep it safe and and stability. The purpose of this work is to model the steam power system, optimize it using neural network genetic algorithms, study its performance indicators.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
Access count: 0
Last 30 days: 0