Details

Title Machine learning methods of multi-objective optimization of manufacturing processes Методы машинного обучения в многокритериальной оптимизации производственных процессов: выпускная квалификационная работа магистра: направление 09.04.01 «Информатика и вычислительная техника» ; образовательная программа 09.04.01_17 «Интеллектуальные системы (международная образовательная программа) / Intelligent Systems (International Educational Program)»
Creators Шэнь Хуэй
Scientific adviser Шкодырев Вячеслав Петрович
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и кибербезопасности
Imprint Санкт-Петербург, 2024
Collection Выпускные квалификационные работы; Общая коллекция
Subjects steam power boiler; generic algorithm; neural network; steam power system; multi-optimization
Document type Master graduation qualification work
File type PDF
Language Russian
Level of education Master
Speciality code (FGOS) 09.04.01
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
DOI 10.18720/SPBPU/3/2024/vr/vr24-5874
Rights Доступ по паролю из сети Интернет (чтение)
Additionally New arrival
Record key ru\spstu\vkr\33950
Record create date 11/29/2024

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Group Anonymous
Network Internet

In multi-objective optimization problems, different objectives often conflict with each other, that is, improving one objective may lead to a decrease in the performance of other objectives. Therefore, it is impossible to achieve the ideal optimal state of all goals at the same time, but coordination and compromise between various goals are required. In practical applications, multi-objective optimization algorithms need to take into account the weight relationships between different objectives and find a set of solutions that meet the requirements through iteration and search. Boiler is the power and material source of steam power system. Its performance really affect the work of System Power System. So it’s a vital problem to control the boiler produce as much as steam and energy taking from it and keep it safe and and stability. The purpose of this work is to model the steam power system, optimize it using neural network genetic algorithms, study its performance indicators.

Network User group Action
ILC SPbPU Local Network All
Read
Internet Authorized users SPbPU
Read
Internet Anonymous

Access count: 0 
Last 30 days: 0

Detailed usage statistics