Детальная информация
Название | Апостериорный анализ приближенных решений нелинейных задач теории жидкости: выпускная квалификационная работа магистра: направление 01.04.02 «Прикладная математика и информатика» ; образовательная программа 01.04.02_01 «Прикладная математика и биоинформатика» |
---|---|
Авторы | Шао Цзяци |
Научный руководитель | Репин Сергей Игоревич |
Организация | Санкт-Петербургский политехнический университет Петра Великого. Физико-механический институт |
Выходные сведения | Санкт-Петербург, 2024 |
Коллекция | Выпускные квалификационные работы; Общая коллекция |
Тематика | жидкость Бингама; численные методы; адаптивный метод; апостериорная оценка; Bingham liquid; numerical methods; adaptive method; posteriori estimation |
Тип документа | Выпускная квалификационная работа магистра |
Тип файла | |
Язык | Русский |
Уровень высшего образования | Магистратура |
Код специальности ФГОС | 01.04.02 |
Группа специальностей ФГОС | 010000 - Математика и механика |
DOI | 10.18720/SPBPU/3/2024/vr/vr24-5885 |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать) |
Дополнительно | Новинка |
Ключ записи | ru\spstu\vkr\30821 |
Дата создания записи | 06.08.2024 |
Разрешенные действия
–
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа | Анонимные пользователи |
---|---|
Сеть | Интернет |
Данная работа посвящена анализу нелинейной краевой задачи в математической физике, исследованию гарантированных и полностью вычисляемых апостериорных оценок для нелинейной вязкой модели, связанной с антиплоским течением неньютоновской жидкости (жидкости Бингама) в трубе. Задачи, которые решались в ходе работы: 1. Получение гарантированных и вычисляемых апостериорных оценок для аппроксимаций минимайзера, построенных с использованием алгоритма Удзавы. 2. Проверка индекса эффективности полученной апостериорной оценки и индикации ошибки. 3. Реализация адаптивного алгоритма. Результаты численных экспериментов подтвердили, что данная нелинейная модель жидкости Бингама имеет свободную границу, и показали, что индекс эффективности полученной мажоранты не превосходит 2 и мажоранта дает правильное представление о распределении ошибок по потокам. На основе индикации реализован полный адаптивный алгоритм, который заключается в следующих этапах: 1. Начальная сетка Ω0 задана для k = 0. 2. Решив исходную задачу, мы получаем решение vk. 3. Используя индикатор, помечаем элементы, требующие уточнения. 4. Получаем новую сетку Ωk+1 и возвращаемся к шагу 2.
The topic of the final qualifying work: A posteriori analysis of approximate solutions to nonlinear problems of fluid theory. This work is devoted to the analysis of a nonlinear boundary value problem in mathematical physics, the study of guaranteed and fully computable a posteriori estimates for a nonlinear viscous model associated with the antiplane flow of a non-Newtonian fluid (Bingham fluid) in a pipe. Tasks that were solved during the work: 1. Obtaining guaranteed and computable a posteriori estimates for minimizer approximations constructed using the Uzawa algorithm. 2. Checking the efficiency index of the received a posteriori assessment and error indication. 3. Implementation of the adaptive algorithm. The results of numerical experiments confirmed that this nonlinear Bingham fluid model has a free boundary, and showed that the efficiency index of the obtained majorant does not exceed 2 and the majorant gives a correct idea of the error distribution along the flows. Based on the indication, a complete adaptive algorithm is implemented, which consists of the following steps: 1. The initial grid Ω0 is set for k = 0. 2. Having solved the original problem, we get the vk solution. 3. Using the indicator, we mark the elements that require clarification. 4. Get a new grid Ωk+1 and go back to step 2.
Место доступа | Группа пользователей | Действие |
---|---|---|
Локальная сеть ИБК СПбПУ | Все |
|
Интернет | Авторизованные пользователи СПбПУ |
|
Интернет | Анонимные пользователи |
|
Количество обращений: 0
За последние 30 дней: 0