Details

Title Measurements of the electrokinetic potential of biocolloid particles using light-scattering techniques: выпускная квалификационная работа магистра: направление 11.04.02 «Инфокоммуникационные технологии и системы связи» ; образовательная программа 11.04.02_07 «Лазерные и оптоволоконные системы (международная образовательная программа) / Laser and Fiber Optic System (International Educational Program)»
Creators Лян Найвэнь
Scientific adviser Медведева Екатерина Александровна
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт электроники и телекоммуникаций
Imprint Санкт-Петербург, 2025
Collection Выпускные квалификационные работы ; Общая коллекция
Subjects zeta potential ; electrophoretic light scattering ; laser doppler electrophoresis ; colloid ; colloidal stability
Document type Master graduation qualification work
Language Russian
Level of education Master
Speciality code (FGOS) 11.04.02
Speciality group (FGOS) 110000 - Электроника, радиотехника и системы связи
DOI 10.18720/SPBPU/3/2025/vr/vr26-366
Rights Доступ по паролю из сети Интернет (чтение)
Additionally New arrival
Record key ru\spstu\vkr\39751
Record create date 2/17/2026

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Group Anonymous
Network Internet

This paper studies the measurement of the electromotive force (zeta potential) of biocolloidal particles using the electrophoretic light scattering (ELS) technique. Several measurement methods are analyzed, including streaming potential, streaming current, and electroosmotic methods. Electrophoresis. Key factors such as sample purity, solution pH, ionic strength, and temperature are discussed, and their influence on the measurement accuracy is emphasized. The ELS method combines laser scattering with electrophoretic motion. The key devices of the experimental setup include a laser source, a beam splitter, a sample cell with electrodes, and a photodetector. The Doppler effect is used to measure the frequency shift of the scattered light caused by the motion of the particles under an applied electric field, and the electrophoretic mobility and zeta potential are calculated. The experimental study targets three colloidal systems: 100 nm latex microspheres, fullerol C60(OH)46, and bovine serum albumin (BSA). The results show that increasing the electric field strength does not significantly change the zeta potential, while adding electrolytes can enhance the electrokinetic potential in lyophilic systems such as BSA and fullerol. Studies on a 1:1 mixture of albumin and fullerol solutions show that when C60(OH)46 is added to the albumin solution, it destroys the aggregation stability of the system.

Network User group Action
ILC SPbPU Local Network All
Read
Internet Authorized users SPbPU
Read
Internet Anonymous
  • CONTENTS
  • CHAPTER 1. LITERATURE REVIEW
    • 1.1. Fluid
      • 1.1.1 Definition of fluid
      • 1.1.2 Fluid properties
    • 1.2 Colloid
      • 1.2.1 What is a colloid
      • 1.2.2 Properties of colloids
      • 1.2.3 Classification of colloids
    • 1.3 Electrophoresis and related knowledge
      • 1.3.1 Electrophoresis
      • 1.3.2 Electric field
      • 1.3.3 Solution pH
      • 1.3.4 Charge movement law
      • 1.3.5 Application fields
    • 1.4 Zeta potential
    • 1.5 Zeta potential measurement method
      • 1.5.1 Streaming potential method
      • 1.5.2 Flow current method
      • 1.5.3 Electroosmosis method
      • 1.5.4 Electrophoresis
      • 1.5.5 Laser Doppler electrophoresis method
      • 1.5.6 Comparison of the advantages and disadvantag
    • 1.6 Relationship between Zeta Potential and Electr
  • CHAPTER 2. ELECTROPHORETIC LIGHT SCATTERING
    • 2.1 Basic principles of electrophoretic light scat
    • 2.2 Knowledge about electrophoretic light scatteri
      • 2.2.1 Sample requirements
      • 2.2.2 Solution-related requirements
    • 2.3 Basic scheme description of electrophoretic li
    • 2.4 Detailed functions of each part of the electro
      • 2.4.1 Laser
      • 2.4.2 Beam splitter
      • 2.4.3 Attenuator
      • 2.4.4 Sample pool
      • 2.4.5 Compensation optics
      • 2.4.6 Combined optics
      • 2.4.7 Detector
      • 2.4.8 Digital signal processor
      • 2.4.9 Computer
    • 2.5 Measurement and calculation of electrophoretic
    • 2.6 Correlation analysis
    • 2.7 Calculation of zeta potential
  • CHAPTER 3. EXPERIMENTAL RESEARCH.
    • 3.1. Experimental design
      • 3.1.1 Introduction of some experimental instrument
      • 3.1.2 The function of each experimental equipment
    • 3.2. Testing of the laboratory setup
    • 3.3. Findings from investigations on colloidal sys
  • REFERENCES

Access count: 0 
Last 30 days: 0

Detailed usage statistics