Детальная информация
Название | De Gruyter reference. — Rare earth elements: analytics |
---|---|
Другие авторы | Golloch Alfred |
Коллекция | Электронные книги зарубежных издательств ; Общая коллекция |
Тематика | Rare earths. ; SCIENCE — Chemistry — Inorganic. ; EBSCO eBooks |
Тип документа | Другой |
Тип файла | |
Язык | Английский |
Права доступа | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Ключ записи | ocn987664798 |
Дата создания записи | 27.03.2017 |
Разрешенные действия
pdf/1513082.pdf | – |
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
|
---|---|---|
epub/1513082.epub | – |
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
|
Группа | Анонимные пользователи |
---|---|
Сеть | Интернет |
Место доступа | Группа пользователей | Действие |
---|---|---|
Локальная сеть ИБК СПбПУ | Все |
|
Интернет | Авторизованные пользователи СПбПУ |
|
Интернет | Анонимные пользователи |
|
- Preface
- Contents
- List of Contributing Authors
- 1. Introduction
- References
- 2. Analytics of Rare Earth Elements – Basics and Methods
- 2.1 Electronic configurations of RE elements and analytical properties
- 2.1.1 Chemistry of Ln3+ ions
- 2.1.2 Chemistry of Ln2+ and Ln4+ ions
- 2.2 The development of rare earth analytics from 1940 to present
- 2.2.1 Determination methods applied during the period from 1940 to 1960
- 2.2.2 Separation methods applied during the period 1940–1960
- 2.2.3 RE analysis during the period 1960–1980
- 2.2.4 Literature review 1978
- 2.2.5 Situation of RE analytics from 1980 to present
- References
- 2.1 Electronic configurations of RE elements and analytical properties
- 3. Separation/Preconcentration Techniques for Rare Earth Elements Analysis
- 3.1 Introduction
- 3.2 Chemical separation techniques for REEs
- 3.2.1 Precipitation/coprecipitation
- 3.3 Liquid–liquid extraction
- 3.3.1 Affecting factors for LLE of REEs
- 3.3.2 Extractants for REEs
- 3.3.3 Extractant concentration and extraction equilibrium constant
- 3.3.4 Medium pH
- 3.3.5 Salting-out agent
- 3.3.6 Extraction systems for REEs and their application
- 3.4 Liquid phase microextraction
- 3.4.1 Operation modes and mechanism
- 3.4.2 Single-drop microextraction
- 3.4.3 Hollow fiber liquid phase microextraction
- 3.4.4 Two-phase HF-LPME
- 3.4.5 Three-phase HF-LPME
- 3.4.6 Dispersive liquid–liquid microextraction
- 3.4.7 Solidified floating organic drop microextraction
- 3.4.8 Affecting factors in LPME
- 3.4.9 Cloud point extraction
- 3.5 Solid phase extraction
- 3.5.1 Carbon nanotubes and graphene oxide
- 3.5.2 Silica-based materials
- 3.5.3 Chelating resin and ionic-exchange resin
- 3.5.4 Metal oxide nanostructured materials
- 3.5.5 Ion-imprinted materials
- 3.5.6 Metal-organic frameworks (MOFs)
- 3.5.7 Restricted access materials
- 3.5.8 Capillary microextraction
- References
- 4. Chromatographic Techniques for Rare Earth Elements Analysis
- 4.1 Introduction
- 4.2 Liquid chromatography
- 4.2.1 Ion-exchange chromatography
- 4.2.2 Ion chromatography
- 4.2.3 Reverse-phase ion pair chromatography (RPIPC)
- 4.2.4 Extraction chromatography
- 4.2.5 Thin layer chromatography (TLC) and Paper chromatography (PC)
- 4.3 Gas chromatography
- 4.4 Capillary Electrophoresis (CE)
- 4.4.1 Basic knowledge and principle
- 4.4.2 Influencing factors on CE separation
- 4.4.3 Applications in REEs analysis
- 4.5 Supercritical fluid chromatography
- References
- 5. Analysis and Speciation of Lanthanoides by ICP-MS
- 5.1 Introduction
- 5.2 Fundamentals of ICP-MS
- 5.2.1 Sample preparation
- 5.2.2 Sample introduction
- 5.2.3 The ion source
- 5.2.4 Interface
- 5.2.5 Lens system
- 5.2.6 Mass analyzers
- 5.2.7 Detector and computer
- 5.3 Analytical figures of merit
- 5.4 Speciation of Gd-based contrast agents
- 5.5 Analysis of Gd-based contrast agents in medical samples
- 5.6 Analysis of Gd-based contrast agents in environmental samples
- 5.7 Summary and outlook
- References
- 6. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis
- 6.1 Introduction
- 6.1.1 Spectral interference
- 6.1.2 Matrix effect
- 6.1.3 Acid effect
- 6.1.4 Sensitivity-enhancing effect of organic solvent
- 6.2 Sample introduction for ICP
- 6.2.1 Pneumatic nebulization and ultrasonic nebulization
- 6.2.2 Flow injection
- 6.2.3 Laser ablation
- 6.2.4 Electrothermal vaporization
- 6.3 ETV-ICP-OES for REE analysis
- 6.3.1 Fluorination-assisted (F)ETV-ICP-OES for REEs analysis
- 6.3.2 Low-temperature ETV-ICP-OES for REEs analysis
- 6.4 Application of ICP-OES in the analysis of high-purity REE, alloys and ores
- 6.4.1 High-purity REE analysis by ICP-OES
- 6.4.2 REE ores analysis by ICP-OES
- 6.4.3 Trace REE analysis by ICP-OES in alloys
- References
- 6.1 Introduction
- 7. Application of Spark Atomic Emission Spectrometry for the Determination of Rare Earth Elements inMetals and Alloys
- 7.1 Introduction
- 7.2 Spark emission spectrometry basics
- 7.3 Setup of a spark emission spectrometer
- 7.3.1 Argon supply
- 7.3.2 Spark stand
- 7.3.3 Spectrometer optical system
- 7.3.4 Spark generator
- 7.3.5 Power supply
- 7.3.6 Operation and evaluation PC
- 7.4 The analysis process
- 7.5 Quantitative analysis
- 7.5.1 Calibration and recalibration
- 7.5.2 Evaluation of calibration and analysis results
- 7.6 Using spark emission spectrometry
- 7.7 Analysing rare earths using spark emission spectrometry
- 7.7.1 Industrial use of rare earths
- 7.7.2 Spectrometric prerequisites
- 7.7.3 Calibration samples
- 7.8 Analysis of aluminium alloys
- 7.8.1 Calibration (analysis function) and accuracy
- 7.8.2 Detection limits
- 7.8.3 Repeatability
- 7.9 Analysis of magnesium alloys
- 7.9.1 Calibration (analysis function) and accuracy
- 7.9.2 Detection limits
- 7.9.3 Repeatability
- 7.10 Analysis of iron alloys
- 7.10.1 Calibration (analysis function) and accuracy
- 7.10.2 Detection limits
- 7.10.3 Repeatability
- 7.10.4 Long-term stability
- 7.11 Analysis of zinc alloys
- 7.11.1 Calibration (analysis function) and accuracy
- 7.11.2 Detection limits
- 7.11.3 Repeatability
- 7.12 Conclusion
- References
- 8. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements
- 8.1 Introduction
- 8.2 Principle of X-ray fluorescence analysis
- 8.3 XRF methods
- 8.3.1 Energy-dispersive X-ray fluorescence analysis
- 8.3.2 Wavelength-dispersive X-ray analysis
- 8.3.3 Comparison of EDXRF–WDXRF
- 8.3.4 Other XRF techniques
- 8.4 Sample preparation
- 8.4.1 Pressed pellets techniques
- 8.4.2 Fusion technology
- 8.4.3 Additional sample preparation techniques
- 8.5 Practical application of REEs determination
- 8.5.1 Reference materials
- 8.5.2 Measuring parameters
- 8.5.3 Analyte lines
- 8.5.4 Lower limit of detection (LLD)
- 8.6 Calibration
- 8.6.1 Other calibration strategies mentioned in literature
- 8.7 Summary
- References
- 9. Neutron Activation Analysis of the Rare Earth Elements (REE) – With Emphasis on Geological Materials
- 9.1 Introduction
- 9.2 Principles of neutron activation: activation equation, cross sections
- 9.3 Equipment
- 9.3.1 Neutron sources
- 9.3.2 The counting system
- 9.4 Practical considerations
- 9.4.1 Instrumental versus radiochemical NAA
- 9.4.2 Samples and standards
- 9.4.3 Counting strategies
- 9.4.4 Radiochemical neutron activation analysis (RNAA) – a fast separation scheme
- 9.4.5 Data reduction and sources of error
- 9.5 Conclusion
- Acknowledgements
- References
- 10. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy
- 10.1 Introduction
- 10.2 Quantitative mineralogy
- 10.3 Scanning electron microscopy
- 10.4 SEM-based automated quantitative mineralogy
- 10.4.1 Quantitative Evaluation of Minerals by Scanning Electron Microscopy
- 10.4.2 Mineral Liberation Analyser
- 10.4.3 Tescan-Integrated Mineral Analyser
- 10.4.4 ZEISS Mineralogic Mining
- 10.5 Quantitative REE mineralogy
- 10.6 Concluding remarks
- Acknowledgements
- References
- 11. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques
- 11.1 Introduction
- 11.2 Bio-conjugation of biomolecules
- 11.2.1 Fundamentals
- 11.2.2 Bio-conjugation of antibodies
- 11.3 Applications
- 11.3.1 Development of identification and quantification strategies for DNA, peptides and proteins in mass spectrometry
- 11.3.2 Analytical and diagnostic applications of lanthanoides
- 11.4 Outlook
- References
- 12. Lanthanoides in Glass and Glass Ceramics
- 12.1 Introduction
- 12.2 Literature survey of rare earth chemical analysis in glass
- 12.2.1 Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
- 12.2.2 Laser-ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES)
- 12.2.3 ICP-MS analysis of solutions
- 12.2.4 X-ray fluorescence analysis (XRF)
- 12.3 Analytical methods for the determination of main components of glass (except lanthanoides)
- 12.4 Preparation of sample solutions for glass analysis by ICP-OES
- 12.4.1 Hydrofluoric acid digestion
- 12.4.2 Melt digestion
- 12.5 ICP-OES analysis of rare earth elements
- 12.6 Analysis of special optical glass
- 12.7 Analysis of glass by topochemical analysis
- References
- 13. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS
- 13.1 Introduction
- 13.2 Technical development
- 13.3 Physical and chemical effects on concentration and isotope ratio determination
- 13.4 Determination of REE concentrations
- 13.4.1 Sample preparation
- 13.4.2 Quantification
- 13.5 Determination of isotope ratios by multi-collector (MC)-ICP-MS
- 13.5.1 Solution-MC-ICP-MS
- 13.5.2 LA-MC-ICP-MS
- 13.6 Concluding remarks
- Acknowledgements
- References
- 14. Recycling of Rare Earth Elements
- 14.1 Recycling of rare earth elements
- 14.2 Recycling from fluorescent lamp scraps
- 14.2.1 Starting material
- 14.2.2 Solid-state chlorination
- 14.2.3 Optimization of the solid-state chlorination
- 14.2.4 Recycling process
- 14.2.5 Summary
- 14.3 RE metal recycling from Fe14Nd2Bmagnets
- 14.3.1 Starting material
- 14.3.2 Preliminary tests
- 14.3.3 Optimization of the solid-state chlorination
- 14.3.4 Recycling process
- 14.3.5 Summary
- References
- Index