Details

Title De Gruyter reference. — Rare earth elements: analytics
Other creators Golloch Alfred
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Rare earths. ; SCIENCE — Chemistry — Inorganic. ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ocn987664798
Record create date 3/27/2017

Allowed Actions

pdf/1513082.pdf
Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network
epub/1513082.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Preface
  • Contents
  • List of Contributing Authors
  • 1. Introduction
    • References
  • 2. Analytics of Rare Earth Elements – Basics and Methods
    • 2.1 Electronic configurations of RE elements and analytical properties
      • 2.1.1 Chemistry of Ln3+ ions
      • 2.1.2 Chemistry of Ln2+ and Ln4+ ions
    • 2.2 The development of rare earth analytics from 1940 to present
      • 2.2.1 Determination methods applied during the period from 1940 to 1960
      • 2.2.2 Separation methods applied during the period 1940–1960
      • 2.2.3 RE analysis during the period 1960–1980
      • 2.2.4 Literature review 1978
      • 2.2.5 Situation of RE analytics from 1980 to present
    • References
  • 3. Separation/Preconcentration Techniques for Rare Earth Elements Analysis
    • 3.1 Introduction
    • 3.2 Chemical separation techniques for REEs
      • 3.2.1 Precipitation/coprecipitation
    • 3.3 Liquid–liquid extraction
      • 3.3.1 Affecting factors for LLE of REEs
      • 3.3.2 Extractants for REEs
      • 3.3.3 Extractant concentration and extraction equilibrium constant
      • 3.3.4 Medium pH
      • 3.3.5 Salting-out agent
      • 3.3.6 Extraction systems for REEs and their application
    • 3.4 Liquid phase microextraction
      • 3.4.1 Operation modes and mechanism
      • 3.4.2 Single-drop microextraction
      • 3.4.3 Hollow fiber liquid phase microextraction
      • 3.4.4 Two-phase HF-LPME
      • 3.4.5 Three-phase HF-LPME
      • 3.4.6 Dispersive liquid–liquid microextraction
      • 3.4.7 Solidified floating organic drop microextraction
      • 3.4.8 Affecting factors in LPME
      • 3.4.9 Cloud point extraction
    • 3.5 Solid phase extraction
      • 3.5.1 Carbon nanotubes and graphene oxide
      • 3.5.2 Silica-based materials
      • 3.5.3 Chelating resin and ionic-exchange resin
      • 3.5.4 Metal oxide nanostructured materials
      • 3.5.5 Ion-imprinted materials
      • 3.5.6 Metal-organic frameworks (MOFs)
      • 3.5.7 Restricted access materials
      • 3.5.8 Capillary microextraction
    • References
  • 4. Chromatographic Techniques for Rare Earth Elements Analysis
    • 4.1 Introduction
    • 4.2 Liquid chromatography
      • 4.2.1 Ion-exchange chromatography
      • 4.2.2 Ion chromatography
      • 4.2.3 Reverse-phase ion pair chromatography (RPIPC)
      • 4.2.4 Extraction chromatography
      • 4.2.5 Thin layer chromatography (TLC) and Paper chromatography (PC)
    • 4.3 Gas chromatography
    • 4.4 Capillary Electrophoresis (CE)
      • 4.4.1 Basic knowledge and principle
      • 4.4.2 Influencing factors on CE separation
      • 4.4.3 Applications in REEs analysis
    • 4.5 Supercritical fluid chromatography
    • References
  • 5. Analysis and Speciation of Lanthanoides by ICP-MS
    • 5.1 Introduction
    • 5.2 Fundamentals of ICP-MS
      • 5.2.1 Sample preparation
      • 5.2.2 Sample introduction
      • 5.2.3 The ion source
      • 5.2.4 Interface
      • 5.2.5 Lens system
      • 5.2.6 Mass analyzers
      • 5.2.7 Detector and computer
    • 5.3 Analytical figures of merit
    • 5.4 Speciation of Gd-based contrast agents
    • 5.5 Analysis of Gd-based contrast agents in medical samples
    • 5.6 Analysis of Gd-based contrast agents in environmental samples
    • 5.7 Summary and outlook
    • References
  • 6. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis
    • 6.1 Introduction
      • 6.1.1 Spectral interference
      • 6.1.2 Matrix effect
      • 6.1.3 Acid effect
      • 6.1.4 Sensitivity-enhancing effect of organic solvent
    • 6.2 Sample introduction for ICP
      • 6.2.1 Pneumatic nebulization and ultrasonic nebulization
      • 6.2.2 Flow injection
      • 6.2.3 Laser ablation
      • 6.2.4 Electrothermal vaporization
    • 6.3 ETV-ICP-OES for REE analysis
      • 6.3.1 Fluorination-assisted (F)ETV-ICP-OES for REEs analysis
      • 6.3.2 Low-temperature ETV-ICP-OES for REEs analysis
    • 6.4 Application of ICP-OES in the analysis of high-purity REE, alloys and ores
      • 6.4.1 High-purity REE analysis by ICP-OES
      • 6.4.2 REE ores analysis by ICP-OES
      • 6.4.3 Trace REE analysis by ICP-OES in alloys
    • References
  • 7. Application of Spark Atomic Emission Spectrometry for the Determination of Rare Earth Elements inMetals and Alloys
    • 7.1 Introduction
    • 7.2 Spark emission spectrometry basics
    • 7.3 Setup of a spark emission spectrometer
      • 7.3.1 Argon supply
      • 7.3.2 Spark stand
      • 7.3.3 Spectrometer optical system
      • 7.3.4 Spark generator
      • 7.3.5 Power supply
      • 7.3.6 Operation and evaluation PC
    • 7.4 The analysis process
    • 7.5 Quantitative analysis
      • 7.5.1 Calibration and recalibration
      • 7.5.2 Evaluation of calibration and analysis results
    • 7.6 Using spark emission spectrometry
    • 7.7 Analysing rare earths using spark emission spectrometry
      • 7.7.1 Industrial use of rare earths
      • 7.7.2 Spectrometric prerequisites
      • 7.7.3 Calibration samples
    • 7.8 Analysis of aluminium alloys
      • 7.8.1 Calibration (analysis function) and accuracy
      • 7.8.2 Detection limits
      • 7.8.3 Repeatability
    • 7.9 Analysis of magnesium alloys
      • 7.9.1 Calibration (analysis function) and accuracy
      • 7.9.2 Detection limits
      • 7.9.3 Repeatability
    • 7.10 Analysis of iron alloys
      • 7.10.1 Calibration (analysis function) and accuracy
      • 7.10.2 Detection limits
      • 7.10.3 Repeatability
      • 7.10.4 Long-term stability
    • 7.11 Analysis of zinc alloys
      • 7.11.1 Calibration (analysis function) and accuracy
      • 7.11.2 Detection limits
      • 7.11.3 Repeatability
    • 7.12 Conclusion
    • References
  • 8. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements
    • 8.1 Introduction
    • 8.2 Principle of X-ray fluorescence analysis
    • 8.3 XRF methods
      • 8.3.1 Energy-dispersive X-ray fluorescence analysis
      • 8.3.2 Wavelength-dispersive X-ray analysis
      • 8.3.3 Comparison of EDXRF–WDXRF
      • 8.3.4 Other XRF techniques
    • 8.4 Sample preparation
      • 8.4.1 Pressed pellets techniques
      • 8.4.2 Fusion technology
      • 8.4.3 Additional sample preparation techniques
    • 8.5 Practical application of REEs determination
      • 8.5.1 Reference materials
      • 8.5.2 Measuring parameters
      • 8.5.3 Analyte lines
      • 8.5.4 Lower limit of detection (LLD)
    • 8.6 Calibration
      • 8.6.1 Other calibration strategies mentioned in literature
    • 8.7 Summary
    • References
  • 9. Neutron Activation Analysis of the Rare Earth Elements (REE) – With Emphasis on Geological Materials
    • 9.1 Introduction
    • 9.2 Principles of neutron activation: activation equation, cross sections
    • 9.3 Equipment
      • 9.3.1 Neutron sources
      • 9.3.2 The counting system
    • 9.4 Practical considerations
      • 9.4.1 Instrumental versus radiochemical NAA
      • 9.4.2 Samples and standards
      • 9.4.3 Counting strategies
      • 9.4.4 Radiochemical neutron activation analysis (RNAA) – a fast separation scheme
      • 9.4.5 Data reduction and sources of error
    • 9.5 Conclusion
    • Acknowledgements
    • References
  • 10. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy
    • 10.1 Introduction
    • 10.2 Quantitative mineralogy
    • 10.3 Scanning electron microscopy
    • 10.4 SEM-based automated quantitative mineralogy
      • 10.4.1 Quantitative Evaluation of Minerals by Scanning Electron Microscopy
      • 10.4.2 Mineral Liberation Analyser
      • 10.4.3 Tescan-Integrated Mineral Analyser
      • 10.4.4 ZEISS Mineralogic Mining
    • 10.5 Quantitative REE mineralogy
    • 10.6 Concluding remarks
    • Acknowledgements
    • References
  • 11. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques
    • 11.1 Introduction
    • 11.2 Bio-conjugation of biomolecules
      • 11.2.1 Fundamentals
      • 11.2.2 Bio-conjugation of antibodies
    • 11.3 Applications
      • 11.3.1 Development of identification and quantification strategies for DNA, peptides and proteins in mass spectrometry
      • 11.3.2 Analytical and diagnostic applications of lanthanoides
    • 11.4 Outlook
    • References
  • 12. Lanthanoides in Glass and Glass Ceramics
    • 12.1 Introduction
    • 12.2 Literature survey of rare earth chemical analysis in glass
      • 12.2.1 Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
      • 12.2.2 Laser-ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES)
      • 12.2.3 ICP-MS analysis of solutions
      • 12.2.4 X-ray fluorescence analysis (XRF)
    • 12.3 Analytical methods for the determination of main components of glass (except lanthanoides)
    • 12.4 Preparation of sample solutions for glass analysis by ICP-OES
      • 12.4.1 Hydrofluoric acid digestion
      • 12.4.2 Melt digestion
    • 12.5 ICP-OES analysis of rare earth elements
    • 12.6 Analysis of special optical glass
    • 12.7 Analysis of glass by topochemical analysis
    • References
  • 13. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS
    • 13.1 Introduction
    • 13.2 Technical development
    • 13.3 Physical and chemical effects on concentration and isotope ratio determination
    • 13.4 Determination of REE concentrations
      • 13.4.1 Sample preparation
      • 13.4.2 Quantification
    • 13.5 Determination of isotope ratios by multi-collector (MC)-ICP-MS
      • 13.5.1 Solution-MC-ICP-MS
      • 13.5.2 LA-MC-ICP-MS
    • 13.6 Concluding remarks
    • Acknowledgements
    • References
  • 14. Recycling of Rare Earth Elements
    • 14.1 Recycling of rare earth elements
    • 14.2 Recycling from fluorescent lamp scraps
      • 14.2.1 Starting material
      • 14.2.2 Solid-state chlorination
      • 14.2.3 Optimization of the solid-state chlorination
      • 14.2.4 Recycling process
      • 14.2.5 Summary
    • 14.3 RE metal recycling from Fe14Nd2Bmagnets
      • 14.3.1 Starting material
      • 14.3.2 Preliminary tests
      • 14.3.3 Optimization of the solid-state chlorination
      • 14.3.4 Recycling process
      • 14.3.5 Summary
    • References
  • Index
pdf/1513082.pdf

Access count: 0 
Last 30 days: 0

Detailed usage statistics

epub/1513082.epub

Access count: 0 
Last 30 days: 0

Detailed usage statistics