Details

Title: Materials Research Foundations Ser. Carbonaceous Composite Materials.
Creators: Sharma Gaurav.; Kumar Amit.
Imprint: Millersville, PA: Materials Research Forum LLC, 2018
Collection: Электронные книги зарубежных издательств; Общая коллекция
Subjects: Carbon composites.; TECHNOLOGY & ENGINEERING / Engineering (General); TECHNOLOGY & ENGINEERING / Reference.; EBSCO eBooks
Document type: Other
File type: PDF
Language: English
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key: on1076255305

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

This book reports current progress in the development, design and utilization of carbonaceous materials in such diverse areas as electronics, medical implants, drug delivery, clean energy, biofuel and pollution control. Keywords: Carbonaceous Materials, Carbons, Graphite, Biochar, Fullerenes, Graphene, Carbon Foam, Carbon Nanotubes, Graphene Oxide, Graphitic Carbon Nitride, Carbon Aerogels, Carbon Matrix Composites, Organic-inorganic Hybrid Materials, Building Materials, Carbon-based Composites, Carbon Matrix Polymer Composites, Conducting Polymers, Clean Energy, Energy Storage, Electrode Mate.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users SPbPU Read Print Download
-> Internet Anonymous

Table of Contents

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Graphene and Graphene/TiO2 Nanocomposites for Renewable Dye Sensitized Solar Cells
    • 1. Introduction
    • 2. Historical overview of DSSCs
      • 2.1 Material Selection for DSSCs
    • 3. Reduced graphene oxide (rGO)
      • 3.1 Electronic properties of rGO based bilayer systems
      • 3.2 Thermal conductivity of rGO
      • 3.3 Optical properties of rGO
      • 3.4 Electrochemical performance of rGO
    • 4. TiO2-rGO NC material
      • 4.1 TiO2-rGO NC material’s properties
      • 4.2 Formation mechanism of TiO2-rGO NC material
      • 4.4 Preparation of TiO2-rGO NC
      • 4.4.1 Sol-Gel synthesis
      • 4.4.2 Solution mixing synthesis
      • 4.4.3 In-Situ growth synthesis
    • 5. Conclusion
    • 6. Acknowledgements
    • References
  • 2
    • Carbon Based Nanomaterials for Energy Storage
    • 1. Introduction
    • 2. Carbonaceous nanomaterials
      • 2.1 Origin
      • 2.2 Fullerenes
      • 2.3 Carbon nanotubes
      • 2.4 Graphene
      • 2.5 Nitrogen doped carbon nanomaterial
      • 2.6 Carbon gels
    • 3. Energy storage system
      • 3.1 Electrochemical storage system
      • 3.1.1 Binder free electrodes
      • 3.1.2 Super capacitors
      • 3.1.3 Lithium-ion batteries
      • 3.2 Nanomaterials as electrodes
      • 3.3 Hydrogen storage system
      • 3.4 Thermal energy storage
      • 3.5 Nanomaterials as Fuel cells
      • 3.6 Capture of carbondioxide and methane
    • 4. Conclusion and future development
    • References
  • 3
    • Molecular Dynamics Simulation of Capped Single Walled Carbon Nanotubes and their Composites
    • 1. Introduction
    • 2. Materials and method
      • 2.1 CNT
      • 2.2 Polymer
      • 2.3 Simulation strategy
    • 3. Total potential energies and inter-atomic forces
    • 4. Stiffness of SWCNTs
      • 4.1 Modeling of SWCNTs
      • 4.2 Geometry optimization
      • 4.3 Dynamics
      • 4.4 Mechanical properties
    • 5. Results and discussion
    • 6. Polymer/CNT Composites
      • 6.1 Molecular model of polymer matrix
      • 6.2 Elastic moduli of polymer
      • 6.3 PMMA/CNT composite system
    • 7. Conclusion
    • References
  • 4
    • Fullerenes and its Composites
    • 1. Introduction
    • 2. Fullerenes
      • 2.1 Types of fullerenes
      • 2.1.1 Nanotubes
      • 2.1.2 Mega tubes
      • 2.1.3 Bucky ball clusters
      • 2.1.4 Polymers
      • 2.1.5 Nano onion
      • 2.1.6 Linked “ball and chain” dimers
    • 3. Structure of fullerene
      • 3.1 Bucky ball structure
      • 3.2 Cylindrical structure
    • 4. Synthesis
      • 4.1 Arc discharge vaporization of graphite
      • 4.2 Low – pressure Benzene/Oxygen diffusion flame method
      • 4.3 Combustion process
      • 4.4 Laser ablation
      • 4.5 Chemical vapor deposition (CVD)
      • 4.6 Chemical synthesis of fullerene
    • 5. Properties
      • 5.1 Physical properties
      • 5.2 Size
      • 5.3 Solubility
      • 5.4 Chemical properties
      • 5.5 Optical properties
      • 5.6 Mechanical properties
      • 5.7 Vibrational properties
      • 5.8 Electrical properties
      • 5.9 Magnetic properties
      • 5.10 Lubricating properties
    • 6. Composites of fullerenes
    • 7. Applications
      • 7.1 Fullerenes as wires
      • 7.2 Medicinal applications
      • 7.3 Fullerenes in organo photovoltaics
      • 7.4 Fullerenes as hydrogen gas storage
      • 7.5 Fullerenes as sensors
    • Conclusion
    • References
  • 5
    • Graphene Oxide Composites and their Potential Applications
    • 1. Supercapacitors or electrochemical capacitors
    • 2. Lithium-ion batteries
    • 3. Glucose sensors
    • 4. H2O2 sensors
    • 5. Photodegradation of organic pollutants
    • 6. Cancer therapy
    • Conclusion
    • Acknowledgment:
    • List of Abbreviations
    • References
  • 6
    • Bioceramics, Carbonaceous Composite and its Biomedical Applications
    • 1. Introduction (Types of implant materials)
      • 1.1 Stainless Steel
      • 1.2 Cobalt-Chromium Alloys
      • 1.3 Titanium Alloys
      • 1.4 Commercially Pure Titanium (CP Ti)
      • 1.5 Tantalum
      • 1.6 Ultra High Molecular Weight Polyethylene (UHMWPE)
      • 1.7 Ceramics
      • 1.8 Composite Materials
      • 1.9 Trabecular Metal
      • 1.10 Bioabsorbable Materials
      • 1.11 Silicone
    • 2. Features of an ideal medical implants material
    • 3. History of bioceramics origin
    • 4. Bioceramics and its early uses
    • 5. Overview of bioceramics applications
    • 6. Subdivision of bioceramics
      • 6.1 Bioinert
      • 6.1.1 Alumina (Al2O3)
      • 6.1.2 Zirconia (ZrO2)
      • 6.2 Bioactive
      • 6.2.1 Synthetic hydroxyapatite [Ca10(PO4)6(OH)2]
      • 6.2.3 Bioactive glass (e.g. 45S5 Bioglass)
      • 6.2.4 Apatite-wollastonite (A-W) glass-ceramic
      • 6.3 Bioresorbable
      • 6.4 Porous ceramics
    • 7. Ceramic Materials for Artificial Joints
    • 8. Coatings for medical implants
      • 8.1 Carbon coating
      • 8.2 Hydroxyapatite coating
    • 9. Failure of metals used for biomedical devices
      • 9.1 Corrosion
      • 9.2 Fatigue and fracture
      • 9.3 Wear
      • 9.4 Metal ions release
    • Acknowledgements
    • References
  • 7
    • Purification of Industrial Effluent by Ultrafiltration Ceramic Membrane based on Natural Clays and Starch Powder
    • 1. Introduction
    • 2. Characterization of the starting materials
      • 2.1 Chemical composition of the powder
      • 2.2 Particle size distribution (PSD) of the kaolin powder used in the tubular support elaboration
      • 2.3 Phase identification
      • 2.4 Thermal analysis
    • 3. Support elaboration and characterization
      • 3.1 Tubular porous support elaboration
      • 3.2 Support characterization
    • 4. Ultrafiltration layer deposition and characterization
      • 4.1 Ultrafiltration layer deposition
      • 4.2 Characterization of the slip
      • 4.3 Membrane characterization
      • 4.3.1 SEM analysis and pore size distribution
      • 4.3.2 Water permeability
    • 5. Application to the treatment of the industrial wastewater
      • 5.1 Wastewater characteristics
      • 5.2 Ultrafiltration treatment
      • 5.3 Wastewater characterization
      • 5.4 Membrane regeneration
    • Conclusion
    • References
  • 8
    • Environmental Detoxification Using Carbonaceous Composites
    • 1. Introduction
    • 2. Carbon based materials
      • 2.1 Fullerenes
      • 2.2 Carbon Nanotubes
      • 2.3 Graphene based material
    • 3. Engineered carbon nanomaterials (ECNM)
    • 4. Removal of ionic pollutants
    • 5. Removal of organic pollutants
    • 6. Removal of air pollution
    • 7. Properties
    • 8. Photocatalysis and sorbents
    • 9. Carbonaceous nanomaterials as sorbents
    • 10. Composite filters
    • 11. Renewable energy
    • 12. Antimicrobials agents
    • 13. Sensor based on carbon nanomaterials
    • Conclusion
    • References
  • 9
    • Recent Innovation and Advances in Utilization of Graphene Oxide Based Photocatalysis
    • 1. Introduction
    • 2. Graphene oxide (GO)
      • 2.1 Synthesis of GO from graphite powder/flakes
    • 3. Reduced graphene oxide (RGO)
      • 3.1 RGO synthesis
      • 3.2 Thermal reduction
      • 3.3 Chemical reduction
      • 3.4 Photoreduction of GO
      • 3.5 Solvothermal method
      • 3.6 Green reduction strategies
    • 4. Chemical modification or functionalization
    • 5. Utilization and application of GO and RGO
      • 5.1 Role in photocatalysis
      • 5.2 Role of GO/RGO in the photocatalytic hydrogen generation and oxidation reduction processes
    • 6. Mode of biomedical application
    • 7. Future perspective and exploration
    • 8. Conclusion
    • References
  • 10
    • A Critical Review on Spectroscopic Characterization of Sustainable Nanocomposites Containing Carbon Nano Fillers
    • 1. Introduction
      • 1.1 Carbon nano-fillers
      • 1.2 Polymer nanocomposites
    • 2. Characterization of nanomaterials
      • 2.1 X-ray diffraction
      • 2.2 Raman spectroscopy
      • 2.3 Scanning tunneling microscopy and transmission electron microscopy
      • 2.3.1 Principle of scanning tunneling microscopy
      • 2.3.2 Transmission electron microscopy
      • 2.3.3 Examples of STM and TEM
      • 2.4 X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy
      • 2.4.1 X-ray photoelectron spectroscopy
      • 2.4.2 Fourier transform infrared (FTIR) Spectroscopy
      • 2.4.3 Examples of measurements of XPS and FTIR
      • 2.5 UV-Visible spectroscopy
      • 2.6 Other techniques
    • 3. Future trend
    • Conclusions
    • References
  • 11
    • Biochar and its Composites
    • 1. Introduction
    • 2. Biochar structure and composition
    • 3. Biomass conversion methodology
    • 4. Biochar production
      • 4.1 Pyrolysis
      • 4.2.1 Materials required for pyrolysis process
      • 4.2.2 Working principle
      • 4.2.3 Factors influencing the process of pyrolysis
      • 4.3 Biomass gasification
      • 4.3 Hydrothermal carbonisation
    • 5. Biochar characterization
      • 5.1 Physical characterization
      • 5.2 Chemical characterization
    • 6. Biochar composites
    • 7. Environmental impacts of biochar
    • 8. Applications
      • 8.1 Biochar as sorbents
      • 8.2 Biochar in agriculture
      • 8.3 Carbon sequestration
    • Conclusion
    • References
  • back-matter
    • Keyword Index

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics