Details

Title International School of Physics 'Enrico Fermi' ;. — Foundations of quantum theory. — Course 197.
Other creators Rasel E. M., ; Schleich Wolfgang ; Wölk S.
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Quantum theory. ; SCIENCE / Energy. ; SCIENCE / Mechanics / General. ; SCIENCE / Physics / General. ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key on1086375617
Record create date 2/20/2019

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Title Page
  • Contents
  • Preface
  • Course group shot
  • Science in tumultuous times
    • Introduction
    • 1. The years of the First World War (1914-1918)
    • 2. Post-War years (1919-1921)
    • 3. Quantum mechanics (the 1920s)
    • 4. Exile (1933)
    • 5. The atom bomb (1945)
    • 6. The Nobel Prize (1954)
    • 7. Conclusion (1970)
    • Appendix A
    • Appendix B
  • But God does play dice: The path to quantum mechanics
    • Introduction
    • 1. Breslau, Germany (now Wroclaw, Poland)
    • 2. Gottingen
    • 3. Frankfurt
    • 4. Gottingen again
    • 5. America
    • 6. Gottingen
  • From the Bohr model to Heisenberg's quantum mechanics
    • 1. Introduction
    • 2. From Balmer to Bohr
    • 3. The Bohr model between success and failure
    • 4. Heisenberg's path from classical physics to quantum mechanics
      • 4.1. Action integral in Fourier space
      • 4.2. Extension to an arbitrary frequency spectrum
      • 4.3. The appearance of non-commuting quantities
    • 5. Quantization of the linear harmonic oscillator
    • 6. Light at the end of the tunnel
  • The linearity of quantum mechanics and the birth of the Schrodinger equation
    • 1. Introduction
      • 1.1. Linearization of the non-linear wave equation
      • 1.2. Key ideas of our previous approaches
      • 1.3. Outline
    • 2. Road towards the Schrodinger equation
    • 3. Comparison with the literature
    • 4. Why zero?
      • 4.1. A curious mathematical identity
      • 4.2. Definition of a quantum wave by its amplitude
      • 4.3. Formulation of the problem
    • 5. Classical mechanics guides the amplitude of the Schrodinger wave
      • 5.1. Hamilton-Jacobi theory in a nutshell
      • 5.2. Classical action as a phase field
    • 6. Quantum condition implies linear Schrodinger equation
      • 6.1. Emergence of a quantum phase
      • 6.2. Continuity equation with quantum current
      • 6.3. Quantum Hamilton-Jacobi equation
    • 7. Classicality condition implies non-linear wave equation
      • 7.1. General real amplitude
      • 7.2. Amplitude given by Van Vleck determinant
        • 7.2.1. Super-classical waves
        • 7.2.2. Super-classical waves are WKB waves
    • 8. From Van Vleck via Rosen to Schrodinger
      • 8.1. The need for linearity
      • 8.2. Linearization due to quantum current
    • 9. Summary and outlook
    • Appendix A. Van Vleck continuity equation
      • Appendix A.1. One-dimensional case
        • Appendix A.1.1. Derivation of continuity equation
        • Appendix A.1.2. Explicit expressions for density and current from action
        • Appendix A.1.3. Density and current from continuity equation
      • Appendix A.2. Multi-dimensional case
      • Appendix A.3. Differential of a determinant
    • Appendix B. Non-linear wave equation for WKB wave
  • Wave phenomena and wave equations
    • 1. Preludium
    • 2. Water waves
      • 2.1. Wave equation for water waves
    • 3. Matter wave
      • 3.1. Wave equation for matter wave
    • 4. Final remark
    • 5. Further readings
  • History leading to Bell's inequality and experiments
    • 1. Introduction
    • 2. Early history
    • 3. The beginnings of quantum mechanics
    • 4. Bell Inequalities
    • 5. Initial experiments
  • Sewing Greenberger-Horne-Zeilinger states with a quantum zipper
    • 1. Introduction
    • 2. Mechanism
    • 3. Implementation
  • Quantum state generation via frequency combs
    • 1. Optical quantum state preparation
    • 2. Quantum frequency combs from bulk-based systems
    • 3. Integrated quantum frequency combs
    • 4. Conclusion
  • Time after time: From EPR to Wigner's friend and quantum eraser
    • 1. Introduction
    • 2. The Einstein-Podolsky-Rosen (EPR) problem
    • 3. Of Wigner and Wigner's friends
    • 4. Quantum eraser and the Mohrhoff conundrum
    • 5. Summary
  • QBism: Quantum theory as a hero's handbook
    • 1. Introduction
    • 2. Exactly how quantum states fail to exist
    • 3. Teleportation
    • 4. The meaning of no-cloning
    • 5. The essence of Bell's theorem, QBism style
    • 6. The quantum de Finetti theorem
    • 7. Seeking SICs - The Born rule as fundamental
    • 8. Mathematical intermezzo: The sporadic SICs
    • 9. Hilbert-space dimension as a universal capacity
    • 10. Quantum cosmology from the inside
    • 11. The future
  • Information-theoretic derivation of free quantum field theory
    • 1. Introduction
    • 2. Derivation from principles of the quantum-walk theory
      • 2.1. The quantum system: qubit, fermion or boson?
      • 2.2. Quantum walks on Cayley graphs
        • 2.2.1. The homogeneity principle
        • 2.2.2. The locality principle
        • 2.2.3. The isotropy principle
        • 2.2.4. The unitarity principle
      • 2.3. Restriction to Euclidean emergent space
        • 2.3.1. Geometric group theory
    • 3. Quantum walks on Abelian groups and free QFT as their relativistic regime
      • 3.1. Induced representation, and reduction from virtually-Abelian to Abelian quantum walks
      • 3.2. Isotropy and orthogonal embedding in R3
      • 3.3. Quantum walks with Abelian G
      • 3.4. Dispersion relation
      • 3.5. The relativistic regime
      • 3.6. Schrodinger equation for the ultra-relativistic regime
      • 3.7. Recovering the Weyl equation
      • 3.8. Recovering the Dirac equation
        • 3.8.1. Discriminability between quantum walk and quantum field dynamics
        • 3.8.2. Mass and proper-time
        • 3.8.3. Physical dimensions and scales for mass and discreteness
      • 3.9. Recovering Maxwell fields
        • 3.9.1. Photons made of pairs of fermions
        • 3.9.2. Vacuum dispersion
    • 4. Recovering special relativity in a discrete quantum universe
      • 4.1. Quantum-digital Poincare group and the notion of particle
      • 4.2. De Sitter group for non-vanishing mass
    • 5. Conclusions and future perspectives: the interacting theory, ..., gravity?
  • Revealing quantum properties with simple measurements
    • 1. Introduction
    • 2. Wave-particle duality
      • 2.1. Wave-particle duality: an inequality
        • 2.1.1. Distinguishability
        • 2.1.2. Visibility
        • 2.1.3. The wave-particle inequality
      • 2.2. Simultaneous measurements
      • 2.3. Higher-order wave-particle duality
        • 2.3.1. Higher-order distinguishability
        • 2.3.2. Higher-order visibility
        • 2.3.3. Higher-order wave-particle duality
      • 2.4. Duality and entanglement
    • 3. Entanglement
      • 3.1. Bipartite entanglement
        • 3.1.1. Schmidt decomposition
        • 3.1.2. The positive partial transpose criterion
        • 3.1.3. Detecting entanglement with the help of the Cauchy-Schwarz inequality
      • 3.2. Tripartite entanglement
      • 3.3. Multipartite entanglement
      • 3.4. The spatial distribution of entanglement
    • 4. Conclusion
    • Appendix A. Proof of eq. (49)
  • Complementarity and light modes
    • 1. Introduction
    • 2. Spontaneous parametric down-conversion (SPDC) as a tool
    • 3. Induced coherence in the 3-crystal set up
    • 4. Stimulated coherence
    • 5. Complementarity in the spatial dimension
    • 6. Complementarity for single photons in higher-order spatial modes
    • 7. Conclusion
  • Quantum imaging
    • 1. What is quantum imaging?
    • 2. Brief history of quantum methods in metrology
    • 3. Parametric downconversion and the generation of entangled photons
    • 4. What is ghost imaging and what are its properties?
    • 5. Interaction-free imaging
    • 6. Imaging by Mandel's induced coherence
    • 7. Technology for quantum imaging
    • 8. Summary and discussion
  • Spekkens' toy model and contextuality as a resource in quantum computation
    • 1. Spekkens' toy model
    • 2. Contextuality
    • 3. Restricting SM as a subtheory of QM
  • Casimir forces in spherically symmetric dielectric media
    • 1. Introduction
    • The spherical problem
    • 2. Renormalization and Lifshitz theory
    • 3. Results
  • The strange roles of proper time and mass in physics
    • 1. Mass: The role it plays, and the role it ought to play
    • 2. Proper time: The role it plays, and the role it ought to play
    • 3. The equivalence principle and the extended equivalence principle
      • 3.1. Stable particles: The equivalence principle
      • 3.2. Unstable particles: The extended equivalence principle
    • 4. Incorporating mass and proper time as dynamical variables
    • 5. An extended Lorentz transformation and Schrodinger equation
  • Some consequences of mass and proper time as dynamical variables
    • 1. The Lorentz transformation and the Galilean transformation
      • 1.1. The Bargmann theorem in non-relativistic physics
      • 1.2. The problem with the Bargmann theorem
    • 2. The mass-proper time uncertainty relation
    • 3. The classical limit of the equivalence principle
      • 3.1. The strange mass scaling in phase space
    • 4. The different correspondence principles for gravity and non-gravity forces: matrix elements in the classical limit
  • Atom interferometry and its applications
    • 1. Introduction
      • 1.1. Applications of atom interferometry
      • 1.2. Optical elements for atoms
      • 1.3. Sources for atom optics
      • 1.4. Overview
    • 2. Tools of atom interferometry
      • 2.1. Beam splitters and mirrors
        • 2.1.1. Rabi oscillations and two-photon coupling
        • 2.1.2. Bragg and Raman diffraction
        • 2.1.3. Multi-photon coupling by Bragg diffraction
        • 2.1.4. Influence of atom cloud and beam size
      • 2.2. Optical lattices
        • 2.2.1. Bloch theorem
        • 2.2.2. Bloch oscillations
        • 2.2.3. Landau-Zener transitions
      • 2.3. Mach-Zehnder interferometer for gravity measurements
        • 2.3.1. Set-up
        • 2.3.2. Contributions to phase shift
        • 2.3.3. Influence of non-zero pulse duration
        • 2.3.4. Measurement of gravitational acceleration
    • 3. Equivalence principle and atom interferometry
      • 3.1. Frameworks for tests of the universality of free fall
      • 3.2. Simultaneous 87Rb and 39K interferometer
      • 3.3. Data analysis and result
    • 4. Atom-chip-based BEC interferometry
      • 4.1. Delta-kick collimation
      • 4.2. Quantum tiltmeter based on double Bragg diffraction
        • 4.2.1. Rabi oscillations
        • 4.2.2. Tilt measurements
      • 4.3. Sensitive atom-chip gravimeter on a compact baseline
        • 4.3.1. Relaunch of atoms in a retro-reflected optical lattice
        • 4.3.2. Experimental sequence of the atom-chip gravimeter
        • 4.3.3. Analysis of the interferometer output
    • 5. Outlook
      • 5.1. Reduced systematic uncertainties in future devices
      • 5.2. Very long baseline atom interferometry
      • 5.3. Space-borne atom interferometers
  • Atom-chip-based quantum gravimetry with BECs
    • 1. Introduction
    • 2. Atom-chip-based gravimeter prototype in QUANTUS-1
    • 3. Next generation quantum gravimeter QG-1 for mobile applications
  • Gravitational properties of light
  • List of participants

Access count: 0 
Last 30 days: 0

Detailed usage statistics